Numpy基础之排序,搜索和计数

排序
numpy.sort()
例1:

import numpy as np
np.random.seed(20200612)
x = np.random.rand(5, 5) * 10
x = np.around(x, 2)
print(x)
y = np.sort(x)
print(y)

输出:按行排序

[[2.32 7.54 9.78 1.73 6.22]
 [6.93 5.17 9.28 9.76 8.25]
 [0.01 4.23 0.19 1.73 9.27]
 [7.99 4.97 0.88 7.32 4.29]
 [9.05 0.07 8.95 7.9  6.99]]
[[1.73 2.32 6.22 7.54 9.78]
 [5.17 6.93 8.25 9.28 9.76]
 [0.01 0.19 1.73 4.23 9.27]
 [0.88 4.29 4.97 7.32 7.99]
 [0.07 6.99 7.9  8.95 9.05]]

例2:

dt = np.dtype([('name', 'S10'), ('age', np.int)])
a = np.array([("Mike", 21), ("Nancy", 25), ("Bob", 17), ("Jane", 27)], dtype=dt)
b = np.sort(a, order='name')
print(b)
b = np.sort(a, order='age')
print(b)

输出

[(b'Bob', 17) (b'Jane', 27) (b'Mike', 21) (b'Nancy', 25)]
[(b'Bob', 17) (b'Mike', 21) (b'Nancy', 25) (b'Jane', 27)]

numpy.argsort(): 对数组沿给定轴执行间接排序,并使用指定排序类型返回数据的索引数组。这个索引数组用于构造排序后的数组。

np.random.seed(20200612)
x = np.random.randint(0, 10, 10)
print(x)
y = np.argsort(x)
print(y)
print(x[y])
y = np.argsort(-x)
print(y)
print(x[y]

输出

[6 1 8 5 5 4 1 2 9 1]
[1 6 9 7 5 3 4 0 2 8]
[1 1 1 2 4 5 5 6 8 9]
[8 2 0 3 4 5 7 1 6 9]
[9 8 6 5 5 4 2 1 1 1]

numpy.lexsort(): 给定多个可以在电子表格中解释为列的排序键,lexsort返回一个整数索引数组,该数组描述了按多个列排序的顺序。序列中的最后一个键用于主排序顺序,倒数第二个键用于辅助排序顺序,依此类推。keys参数必须是可以转换为相同形状的数组的对象序列。如果为keys参数提供了2D数组,则将其行解释为排序键,并根据最后一行,倒数第二行等进行排序。

np.random.seed(20200612)
x = np.random.rand(5, 5) * 10
x = np.around(x, 2)
print(x)
index = np.lexsort([x[:, 0]])
print(index)
y = x[index]
print(y)
index = np.lexsort([-1 * x[:, 0]])
print(index)

y = x[index]
print(y)

输出:

[[2.32 7.54 9.78 1.73 6.22]
 [6.93 5.17 9.28 9.76 8.25]
 [0.01 4.23 0.19 1.73 9.27]
 [7.99 4.97 0.88 7.32 4.29]
 [9.05 0.07 8.95 7.9  6.99]]
[2 0 1 3 4]
[[0.01 4.23 0.19 1.73 9.27]
 [2.32 7.54 9.78 1.73 6.22]
 [6.93 5.17 9.28 9.76 8.25]
 [7.99 4.97 0.88 7.32 4.29]
 [9.05 0.07 8.95 7.9  6.99]]
[4 3 1 0 2]
[[9.05 0.07 8.95 7.9  6.99]
 [7.99 4.97 0.88 7.32 4.29]
 [6.93 5.17 9.28 9.76 8.25]
 [2.32 7.54 9.78 1.73 6.22]
 [0.01 4.23 0.19 1.73 9.27]]
©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页