opencv——形态学变换_形态学梯度_礼帽_顶帽

1、形态学梯度

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

import cv2 as cv
import numpy as np

"""
    开运算:先腐蚀后膨胀, 去除噪声,去除白色小点、空洞
    闭运算:先膨胀后腐蚀, 用来填充前景物体的小黑点
    形态学梯度:膨胀减去腐蚀, 可以得到前景物体的轮廓
    礼帽:原图减去开运算
    黑帽:闭运算减去原图

    使用函数morphologyEx()进行形态学其他操作
    函数原型为:morphologyEx(src, op, kernel[, dst[, anchor[, iterations[, borderType[, borderValue]]]]]) -> dst
        op参数:
            cv.MORPH_OPEN:开运算
            cv.MORPH_CLOSE:闭运算
            cv.MORPH_GRADIENT:形态学梯度
            cv.MORPH_TOPHAT:礼帽
            cv.MORPH_BLACKHAT:黑帽
        kernel:内核或结构化内核大小
            使用getStructuringElement(shape, ksize[, anchor]) -> retval获得结构化内核
                shape:
                    cv.MORPH_RECT  矩形结构化核
                    cv.MORPH_ELLIPSE 椭圆结构化核
                    cv.MORPH_CROSS 交叉结构化核
                ksize:
                    指定结构化核大小
                anchor:默认为Point(-1,-1),内核中心点。省略时为默认值
        anchor:默认为Point(-1,-1),内核中心点。省略时为默认值。
        iterations:腐蚀次数。省略时为默认值1。
        borderType:推断边缘类型,具体参见borderInterpolate函数。默认值为BORDER_DEFAULT 边缘值拷贝
        borderValue:边缘值,具体可参见createMorphoogyFilter函数,可省略
"""

'''
结构化元素
# Rectangular Kernel
>>> cv.getStructuringElement(cv.MORPH_RECT,(5,5))
array([[1, 1, 1, 1, 1],
       [1, 1, 1, 1, 1],
       [1, 1, 1, 1, 1],
       [1, 1, 1, 1, 1],
       [1, 1, 1, 1, 1]], dtype=uint8)
# Elliptical Kernel
>>> cv.getStructuringElement(cv.MORPH_ELLIPSE,(5,5))
array([[0, 0, 1, 0, 0],
       [1, 1, 1, 1, 1],
       [1, 1, 1, 1, 1],
       [1, 1, 1, 1, 1],
       [0, 0, 1, 0, 0]], dtype=uint8)
# Cross-shaped Kernel
>>> cv.getStructuringElement(cv.MORPH_CROSS,(5,5))
array([[0, 0, 1, 0, 0],
       [0, 0, 1, 0, 0],
       [1, 1, 1, 1, 1],
       [0, 0, 1, 0, 0],
       [0, 0, 1, 0, 0]], dtype=uint8)
'''

img_path = 'j.png'
img = cv.imread(img_path)
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)


# ret, gray = cv.grayold(gray, 200, 255, cv.gray_BINARY)
# ret, gray = cv.grayold(gray, 200, 255, cv.gray_BINARY_INV)


def nothing(x):
    pass


cv.namedWindow('GRADIENT')
# 创建滑动条
cv.createTrackbar('ks', 'GRADIENT', 2, 25, nothing)

while True:
    ks = cv.getTrackbarPos('ks', 'GRADIENT')
    if ks < 1:
        ks += 1
    # Rectangular Kernel
    rectKernel = cv.getStructuringElement(cv.MORPH_RECT, (ks, ks))

    # Elliptical Kernel
    ellKernel = cv.getStructuringElement(cv.MORPH_ELLIPSE, (ks, ks))

    # Cross-shaped Kernel
    crossKernel = cv.getStructuringElement(cv.MORPH_CROSS, (ks, ks))

    rect = cv.morphologyEx(gray, cv.MORPH_GRADIENT, rectKernel)
    ellip = cv.morphologyEx(gray, cv.MORPH_GRADIENT, ellKernel)
    cross = cv.morphologyEx(gray, cv.MORPH_GRADIENT, crossKernel)

    # cv.putText(rect, 'rect:' + str(ks), (80, 20), cv.FONT_HERSHEY_SIMPLEX, .65, (255, 255, 255), 2)
    # cv.putText(ellip, 'ellip:' + str(ks), (80, 20), cv.FONT_HERSHEY_SIMPLEX, .65, (255, 255, 255), 2)
    # cv.putText(cross, 'cross:' + str(ks), (80, 20), cv.FONT_HERSHEY_SIMPLEX, .65, (255, 255, 255), 2)
    # cv.putText(cross, 'cross:' + str(ks), (80, 20), cv.FONT_HERSHEY_SIMPLEX, .65, (255, 255, 255), 2)

    h1 = np.hstack((gray, rect))
    h2 = np.hstack((ellip, cross))
    cv.imshow('GRADIENT', np.vstack((h1, h2)))
    k = cv.waitKey(100) & 0xff
    if chr(k) == 'q':
        break

    if chr(k) == 's':
        cv.imwrite('./outputs/ret_GRADIENT' + str(ks) + '.jpg', rect)
        cv.imwrite('./outputs/ellip_GRADIENT' + str(ks) + '.jpg', ellip)
        cv.imwrite('./outputs/cross_GRADIENT' + str(ks) + '.jpg', cross)

2、形态学梯度加深理解

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

import cv2 as cv
import numpy as np

# 形态学梯度 == 膨胀减腐蚀
kernel = np.ones((3, 3), np.uint8)

eg = np.array(range(0, 25), np.uint8).reshape(5, 5)
print('原矩阵')
print(eg)
print('*' * 60)

open_rect = cv.morphologyEx(eg, cv.MORPH_GRADIENT, kernel)
print('形态学梯度结果')
print(open_rect)
print('*' * 60)

erode = cv.erode(eg, kernel)
print('腐蚀结果')
print(erode)
print('*' * 60)
dilate = cv.dilate(eg, kernel)
print('膨胀结果')
print(dilate)
print('*' * 60)

print('膨胀减腐蚀结果')
print(dilate - erode)

3、礼帽

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

import cv2 as cv
import numpy as np

"""
    开运算:先腐蚀后膨胀, 去除噪声,去除白色小点、空洞
    闭运算:先膨胀后腐蚀, 用来填充前景物体的小黑点
    形态学梯度:膨胀减去腐蚀, 可以得到前景物体的轮廓
    礼帽:原图减去开运算
    黑帽:闭运算减去原图

    使用函数morphologyEx()进行形态学其他操作
    函数原型为:morphologyEx(src, op, kernel[, dst[, anchor[, iterations[, borderType[, borderValue]]]]]) -> dst
        op参数:
            cv.MORPH_OPEN:开运算
            cv.MORPH_CLOSE:闭运算
            cv.MORPH_GRADIENT:形态学梯度
            cv.MORPH_TOPHAT:礼帽
            cv.MORPH_BLACKHAT:黑帽
        kernel:内核或结构化内核大小
            使用getStructuringElement(shape, ksize[, anchor]) -> retval获得结构化内核
                shape:
                    cv.MORPH_RECT  矩形结构化核
                    cv.MORPH_ELLIPSE 椭圆结构化核
                    cv.MORPH_CROSS 交叉结构化核
                ksize:
                    指定结构化核大小
                anchor:默认为Point(-1,-1),内核中心点。省略时为默认值
        anchor:默认为Point(-1,-1),内核中心点。省略时为默认值。
        iterations:腐蚀次数。省略时为默认值1。
        borderType:推断边缘类型,具体参见borderInterpolate函数。默认值为BORDER_DEFAULT 边缘值拷贝
        borderValue:边缘值,具体可参见createMorphoogyFilter函数,可省略
"""

'''
结构化元素
# Rectangular Kernel
>>> cv.getStructuringElement(cv.MORPH_RECT,(5,5))
array([[1, 1, 1, 1, 1],
       [1, 1, 1, 1, 1],
       [1, 1, 1, 1, 1],
       [1, 1, 1, 1, 1],
       [1, 1, 1, 1, 1]], dtype=uint8)
# Elliptical Kernel
>>> cv.getStructuringElement(cv.MORPH_ELLIPSE,(5,5))
array([[0, 0, 1, 0, 0],
       [1, 1, 1, 1, 1],
       [1, 1, 1, 1, 1],
       [1, 1, 1, 1, 1],
       [0, 0, 1, 0, 0]], dtype=uint8)
# Cross-shaped Kernel
>>> cv.getStructuringElement(cv.MORPH_CROSS,(5,5))
array([[0, 0, 1, 0, 0],
       [0, 0, 1, 0, 0],
       [1, 1, 1, 1, 1],
       [0, 0, 1, 0, 0],
       [0, 0, 1, 0, 0]], dtype=uint8)
'''

img_path = 'j.png'
# img_path = 'bkrc.jpg'

img = cv.imread(img_path)
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)


# # ret, gray = cv.grayold(gray, 200, 255, cv.gray_BINARY)
# ret, gray = cv.grayold(gray, 200, 255, cv.gray_BINARY_INV)


def nothing(x):
    pass


cv.namedWindow('TOPHAT')
# 创建滑动条
cv.createTrackbar('ks', 'TOPHAT', 2, 25, nothing)

while True:
    ks = cv.getTrackbarPos('ks', 'TOPHAT')
    if ks < 1:
        ks += 1
    # Rectangular Kernel
    rectKernel = cv.getStructuringElement(cv.MORPH_RECT, (ks, ks))

    # Elliptical Kernel
    ellKernel = cv.getStructuringElement(cv.MORPH_ELLIPSE, (ks, ks))

    # Cross-shaped Kernel
    crossKernel = cv.getStructuringElement(cv.MORPH_CROSS, (ks, ks))

    rect = cv.morphologyEx(gray, cv.MORPH_TOPHAT, rectKernel)
    ellip = cv.morphologyEx(gray, cv.MORPH_TOPHAT, ellKernel)
    cross = cv.morphologyEx(gray, cv.MORPH_TOPHAT, crossKernel)

    # cv.putText(rect, 'rect:' + str(ks), (80, 20), cv.FONT_HERSHEY_SIMPLEX, .65, (255, 255, 255), 2)
    # cv.putText(ellip, 'ellip:' + str(ks), (80, 20), cv.FONT_HERSHEY_SIMPLEX, .65, (255, 255, 255), 2)
    # cv.putText(cross, 'cross:' + str(ks), (80, 20), cv.FONT_HERSHEY_SIMPLEX, .65, (255, 255, 255), 2)
    # cv.putText(cross, 'cross:' + str(ks), (80, 20), cv.FONT_HERSHEY_SIMPLEX, .65, (255, 255, 255), 2)

    h1 = np.hstack((gray, rect))
    h2 = np.hstack((ellip, cross))
    cv.imshow('TOPHAT', np.vstack((h1, h2)))
    k = cv.waitKey(100) & 0xff
    if chr(k) == 'q':
        break

    if chr(k) == 's':
        cv.imwrite('./outputs/rect_MORPH_TOPHAT' + str(ks) + '.jpg', rect)

4、礼帽加深理解

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

import cv2 as cv
import numpy as np

# 礼帽 == 原图减开运算
kernel = np.ones((3, 3), np.uint8)

eg = np.array(range(0, 25), np.uint8).reshape(5, 5)
print('原矩阵')
print(eg)
print('*' * 60)

tophat_rect = cv.morphologyEx(eg, cv.MORPH_TOPHAT, kernel)
print('礼帽结果')
print(tophat_rect)
print('*' * 60)

erode = cv.erode(eg, kernel)
print('腐蚀结果')
print(erode)
print('*' * 60)
dilate = cv.dilate(erode, kernel)
print('先腐蚀后膨胀结果==开运算')
print(dilate)

print('原图减开运算结果')
print(eg - dilate)

5、黑帽

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

import cv2 as cv
import numpy as np

"""
    开运算:先腐蚀后膨胀, 去除噪声,去除白色小点、空洞
    闭运算:先膨胀后腐蚀, 用来填充前景物体的小黑点
    形态学梯度:膨胀减去腐蚀, 可以得到前景物体的轮廓
    礼帽:原图减去开运算
    黑帽:闭运算减去原图

    使用函数morphologyEx()进行形态学其他操作
    函数原型为:morphologyEx(src, op, kernel[, dst[, anchor[, iterations[, borderType[, borderValue]]]]]) -> dst
        op参数:
            cv.MORPH_OPEN:开运算
            cv.MORPH_CLOSE:闭运算
            cv.MORPH_GRADIENT:形态学梯度
            cv.MORPH_TOPHAT:礼帽
            cv.MORPH_BLACKHAT:黑帽
        kernel:内核或结构化内核大小
            使用getStructuringElement(shape, ksize[, anchor]) -> retval获得结构化内核
                shape:
                    cv.MORPH_RECT  矩形结构化核
                    cv.MORPH_ELLIPSE 椭圆结构化核
                    cv.MORPH_CROSS 交叉结构化核
                ksize:
                    指定结构化核大小
                anchor:默认为Point(-1,-1),内核中心点。省略时为默认值
        anchor:默认为Point(-1,-1),内核中心点。省略时为默认值。
        iterations:腐蚀次数。省略时为默认值1。
        borderType:推断边缘类型,具体参见borderInterpolate函数。默认值为BORDER_DEFAULT 边缘值拷贝
        borderValue:边缘值,具体可参见createMorphoogyFilter函数,可省略
"""

'''
结构化元素
# Rectangular Kernel
>>> cv.getStructuringElement(cv.MORPH_RECT,(5,5))
array([[1, 1, 1, 1, 1],
       [1, 1, 1, 1, 1],
       [1, 1, 1, 1, 1],
       [1, 1, 1, 1, 1],
       [1, 1, 1, 1, 1]], dtype=uint8)
# Elliptical Kernel
>>> cv.getStructuringElement(cv.MORPH_ELLIPSE,(5,5))
array([[0, 0, 1, 0, 0],
       [1, 1, 1, 1, 1],
       [1, 1, 1, 1, 1],
       [1, 1, 1, 1, 1],
       [0, 0, 1, 0, 0]], dtype=uint8)
# Cross-shaped Kernel
>>> cv.getStructuringElement(cv.MORPH_CROSS,(5,5))
array([[0, 0, 1, 0, 0],
       [0, 0, 1, 0, 0],
       [1, 1, 1, 1, 1],
       [0, 0, 1, 0, 0],
       [0, 0, 1, 0, 0]], dtype=uint8)
'''

img = cv.imread('bkrc.jpg')
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
# ret, thresh = cv.threshold(gray, 200, 255, cv.THRESH_BINARY)
ret, thresh = cv.threshold(gray, 200, 255, cv.THRESH_BINARY_INV)


def nothing(x):
    pass


cv.namedWindow('BLACKHAT')
# 创建滑动条
cv.createTrackbar('ks', 'BLACKHAT', 2, 25, nothing)

while True:
    ks = cv.getTrackbarPos('ks', 'BLACKHAT')
    if ks < 1:
        ks += 1
    # Rectangular Kernel
    rectKernel = cv.getStructuringElement(cv.MORPH_RECT, (ks, ks))

    # Elliptical Kernel
    ellKernel = cv.getStructuringElement(cv.MORPH_ELLIPSE, (ks, ks))

    # Cross-shaped Kernel
    crossKernel = cv.getStructuringElement(cv.MORPH_CROSS, (ks, ks))

    rect = cv.morphologyEx(thresh, cv.MORPH_BLACKHAT, rectKernel)
    ellip = cv.morphologyEx(thresh, cv.MORPH_BLACKHAT, ellKernel)
    cross = cv.morphologyEx(thresh, cv.MORPH_BLACKHAT, crossKernel)

    cv.putText(rect, 'rect:' + str(ks), (80, 20), cv.FONT_HERSHEY_SIMPLEX, .65, (255, 255, 255), 2)
    cv.putText(ellip, 'ellip:' + str(ks), (80, 20), cv.FONT_HERSHEY_SIMPLEX, .65, (255, 255, 255), 2)
    cv.putText(cross, 'cross:' + str(ks), (80, 20), cv.FONT_HERSHEY_SIMPLEX, .65, (255, 255, 255), 2)
    cv.putText(cross, 'cross:' + str(ks), (80, 20), cv.FONT_HERSHEY_SIMPLEX, .65, (255, 255, 255), 2)

    h1 = np.hstack((thresh, rect))
    h2 = np.hstack((ellip, cross))
    cv.imshow('BLACKHAT', np.vstack((h1, h2)))
    k = cv.waitKey(100) & 0xff
    if chr(k) == 'q':
        break

6、黑帽加深理解

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

import cv2 as cv
import numpy as np

# 黑帽 == 闭运算减原图
kernel = np.ones((3, 3), np.uint8)

eg = np.array(range(0, 25), np.uint8).reshape(5, 5)
print('原矩阵')
print(eg)
print('*' * 60)

tophat_rect = cv.morphologyEx(eg, cv.MORPH_BLACKHAT, kernel)
print('黑帽结果')
print(tophat_rect)
print('*' * 60)

dilate = cv.dilate(eg, kernel)
print('膨胀结果')
print(dilate)
print('*' * 60)
erode = cv.erode(dilate, kernel)
print('先膨胀后腐蚀结果==闭运算')
print(erode)
print('*' * 60)

print('闭运算减原图结果')
print(erode - eg)

7、综合对比

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

import cv2 as cv
import numpy as np

# img_path = 'bkrc.jpg'
img_path = 'shape.png'

img = cv.imread(img_path)
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)


def nothing(x):
    pass


cv.namedWindow('image')
cv.createTrackbar('th', 'image', 127, 255, nothing)
cv.createTrackbar('ks', 'image', 2, 25, nothing)

while True:
    ks = cv.getTrackbarPos('ks', 'image')
    th = cv.getTrackbarPos('th', 'image')
    ret, threash = cv.threshold(gray, th, 255, cv.THRESH_BINARY_INV)
    temp = threash
    kernel = np.ones((ks, ks), np.uint8)
    key = cv.waitKey(100) & 0xFF
    if chr(key) == 'q':
        break
    # 开运算:先腐蚀再膨胀就叫做开运算,用来去噪声。
    opening = cv.morphologyEx(threash, cv.MORPH_OPEN, kernel)
    cv.putText(opening, 'open:' + str(ks), (80, 20), cv.FONT_HERSHEY_SIMPLEX, .65, (255, 255, 255), 2)

    # 先膨胀再腐蚀,它经常用来填充前景物体中的小洞 或者前景物体上的小黑点。
    close = cv.morphologyEx(threash, cv.MORPH_CLOSE, kernel)
    cv.putText(close, 'close:' + str(ks), (80, 20), cv.FONT_HERSHEY_SIMPLEX, .65, (255, 255, 255), 2)

    # 形态学梯度
    # 其实就是一幅图像膨胀与腐的差别。
    # 结果看上去就像前景物体的轮廓。
    gradient = cv.morphologyEx(threash, cv.MORPH_GRADIENT, kernel)
    cv.putText(gradient, 'grad:' + str(ks), (80, 20), cv.FONT_HERSHEY_SIMPLEX, .65, (255, 255, 255), 2)

    # 礼帽
    # 原始图像与开运算之后得到的图像的差。
    tophat = cv.morphologyEx(threash, cv.MORPH_TOPHAT, kernel)
    cv.putText(tophat, 'tophat:' + str(ks), (80, 20), cv.FONT_HERSHEY_SIMPLEX, .65, (255, 255, 255), 2)

    # 黑帽  进行闭运算之后得到的图像与原始图像的差
    blackhat = cv.morphologyEx(threash, cv.MORPH_BLACKHAT, kernel)
    cv.putText(blackhat, 'bkhat:' + str(ks), (80, 20), cv.FONT_HERSHEY_SIMPLEX, .65, (255, 255, 255), 2)

    cv.putText(threash, 'th:' + str(th), (80, 20), cv.FONT_HERSHEY_SIMPLEX, .65, (255, 255, 255), 2)

    h1 = np.hstack((threash, opening, close))
    h2 = np.hstack((gradient, tophat, blackhat))
    v = np.vstack((h1, h2))

    cv.imshow('image', v)

cv.destroyWindow('image')

  • 4
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Sam Chou

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值