1、形态学梯度
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import cv2 as cv
import numpy as np
"""
开运算:先腐蚀后膨胀, 去除噪声,去除白色小点、空洞
闭运算:先膨胀后腐蚀, 用来填充前景物体的小黑点
形态学梯度:膨胀减去腐蚀, 可以得到前景物体的轮廓
礼帽:原图减去开运算
黑帽:闭运算减去原图
使用函数morphologyEx()进行形态学其他操作
函数原型为:morphologyEx(src, op, kernel[, dst[, anchor[, iterations[, borderType[, borderValue]]]]]) -> dst
op参数:
cv.MORPH_OPEN:开运算
cv.MORPH_CLOSE:闭运算
cv.MORPH_GRADIENT:形态学梯度
cv.MORPH_TOPHAT:礼帽
cv.MORPH_BLACKHAT:黑帽
kernel:内核或结构化内核大小
使用getStructuringElement(shape, ksize[, anchor]) -> retval获得结构化内核
shape:
cv.MORPH_RECT 矩形结构化核
cv.MORPH_ELLIPSE 椭圆结构化核
cv.MORPH_CROSS 交叉结构化核
ksize:
指定结构化核大小
anchor:默认为Point(-1,-1),内核中心点。省略时为默认值
anchor:默认为Point(-1,-1),内核中心点。省略时为默认值。
iterations:腐蚀次数。省略时为默认值1。
borderType:推断边缘类型,具体参见borderInterpolate函数。默认值为BORDER_DEFAULT 边缘值拷贝
borderValue:边缘值,具体可参见createMorphoogyFilter函数,可省略
"""
'''
结构化元素
# Rectangular Kernel
>>> cv.getStructuringElement(cv.MORPH_RECT,(5,5))
array([[1, 1, 1, 1, 1],
[1, 1, 1, 1, 1],
[1, 1, 1, 1, 1],
[1, 1, 1, 1, 1],
[1, 1, 1, 1, 1]], dtype=uint8)
# Elliptical Kernel
>>> cv.getStructuringElement(cv.MORPH_ELLIPSE,(5,5))
array([[0, 0, 1, 0, 0],
[1, 1, 1, 1, 1],
[1, 1, 1, 1, 1],
[1, 1, 1, 1, 1],
[0, 0, 1, 0, 0]], dtype=uint8)
# Cross-shaped Kernel
>>> cv.getStructuringElement(cv.MORPH_CROSS,(5,5))
array([[0, 0, 1, 0, 0],
[0, 0, 1, 0, 0],
[1, 1, 1, 1, 1],
[0, 0, 1, 0, 0],
[0, 0, 1, 0, 0]], dtype=uint8)
'''
img_path = 'j.png'
img = cv.imread(img_path)
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
# ret, gray = cv.grayold(gray, 200, 255, cv.gray_BINARY)
# ret, gray = cv.grayold(gray, 200, 255, cv.gray_BINARY_INV)
def nothing(x):
pass
cv.namedWindow('GRADIENT')
# 创建滑动条
cv.createTrackbar('ks', 'GRADIENT', 2, 25, nothing)
while True:
ks = cv.getTrackbarPos('ks', 'GRADIENT')
if ks < 1:
ks += 1
# Rectangular Kernel
rectKernel = cv.getStructuringElement(cv.MORPH_RECT, (ks, ks))
# Elliptical Kernel
ellKernel = cv.getStructuringElement(cv.MORPH_ELLIPSE, (ks, ks))
# Cross-shaped Kernel
crossKernel = cv.getStructuringElement(cv.MORPH_CROSS, (ks, ks))
rect = cv.morphologyEx(gray, cv.MORPH_GRADIENT, rectKernel)
ellip = cv.morphologyEx(gray, cv.MORPH_GRADIENT, ellKernel)
cross = cv.morphologyEx(gray, cv.MORPH_GRADIENT, crossKernel)
# cv.putText(rect, 'rect:' + str(ks), (80, 20), cv.FONT_HERSHEY_SIMPLEX, .65, (255, 255, 255), 2)
# cv.putText(ellip, 'ellip:' + str(ks), (80, 20), cv.FONT_HERSHEY_SIMPLEX, .65, (255, 255, 255), 2)
# cv.putText(cross, 'cross:' + str(ks), (80, 20), cv.FONT_HERSHEY_SIMPLEX, .65, (255, 255, 255), 2)
# cv.putText(cross, 'cross:' + str(ks), (80, 20), cv.FONT_HERSHEY_SIMPLEX, .65, (255, 255, 255), 2)
h1 = np.hstack((gray, rect))
h2 = np.hstack((ellip, cross))
cv.imshow('GRADIENT', np.vstack((h1, h2)))
k = cv.waitKey(100) & 0xff
if chr(k) == 'q':
break
if chr(k) == 's':
cv.imwrite('./outputs/ret_GRADIENT' + str(ks) + '.jpg', rect)
cv.imwrite('./outputs/ellip_GRADIENT' + str(ks) + '.jpg', ellip)
cv.imwrite('./outputs/cross_GRADIENT' + str(ks) + '.jpg', cross)
2、形态学梯度加深理解
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import cv2 as cv
import numpy as np
# 形态学梯度 == 膨胀减腐蚀
kernel = np.ones((3, 3), np.uint8)
eg = np.array(range(0, 25), np.uint8).reshape(5, 5)
print('原矩阵')
print(eg)
print('*' * 60)
open_rect = cv.morphologyEx(eg, cv.MORPH_GRADIENT, kernel)
print('形态学梯度结果')
print(open_rect)
print('*' * 60)
erode = cv.erode(eg, kernel)
print('腐蚀结果')
print(erode)
print('*' * 60)
dilate = cv.dilate(eg, kernel)
print('膨胀结果')
print(dilate)
print('*' * 60)
print('膨胀减腐蚀结果')
print(dilate - erode)
3、礼帽
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import cv2 as cv
import numpy as np
"""
开运算:先腐蚀后膨胀, 去除噪声,去除白色小点、空洞
闭运算:先膨胀后腐蚀, 用来填充前景物体的小黑点
形态学梯度:膨胀减去腐蚀, 可以得到前景物体的轮廓
礼帽:原图减去开运算
黑帽:闭运算减去原图
使用函数morphologyEx()进行形态学其他操作
函数原型为:morphologyEx(src, op, kernel[, dst[, anchor[, iterations[, borderType[, borderValue]]]]]) -> dst
op参数:
cv.MORPH_OPEN:开运算
cv.MORPH_CLOSE:闭运算
cv.MORPH_GRADIENT:形态学梯度
cv.MORPH_TOPHAT:礼帽
cv.MORPH_BLACKHAT:黑帽
kernel:内核或结构化内核大小
使用getStructuringElement(shape, ksize[, anchor]) -> retval获得结构化内核
shape:
cv.MORPH_RECT 矩形结构化核
cv.MORPH_ELLIPSE 椭圆结构化核
cv.MORPH_CROSS 交叉结构化核
ksize:
指定结构化核大小
anchor:默认为Point(-1,-1),内核中心点。省略时为默认值
anchor:默认为Point(-1,-1),内核中心点。省略时为默认值。
iterations:腐蚀次数。省略时为默认值1。
borderType:推断边缘类型,具体参见borderInterpolate函数。默认值为BORDER_DEFAULT 边缘值拷贝
borderValue:边缘值,具体可参见createMorphoogyFilter函数,可省略
"""
'''
结构化元素
# Rectangular Kernel
>>> cv.getStructuringElement(cv.MORPH_RECT,(5,5))
array([[1, 1, 1, 1, 1],
[1, 1, 1, 1, 1],
[1, 1, 1, 1, 1],
[1, 1, 1, 1, 1],
[1, 1, 1, 1, 1]], dtype=uint8)
# Elliptical Kernel
>>> cv.getStructuringElement(cv.MORPH_ELLIPSE,(5,5))
array([[0, 0, 1, 0, 0],
[1, 1, 1, 1, 1],
[1, 1, 1, 1, 1],
[1, 1, 1, 1, 1],
[0, 0, 1, 0, 0]], dtype=uint8)
# Cross-shaped Kernel
>>> cv.getStructuringElement(cv.MORPH_CROSS,(5,5))
array([[0, 0, 1, 0, 0],
[0, 0, 1, 0, 0],
[1, 1, 1, 1, 1],
[0, 0, 1, 0, 0],
[0, 0, 1, 0, 0]], dtype=uint8)
'''
img_path = 'j.png'
# img_path = 'bkrc.jpg'
img = cv.imread(img_path)
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
# # ret, gray = cv.grayold(gray, 200, 255, cv.gray_BINARY)
# ret, gray = cv.grayold(gray, 200, 255, cv.gray_BINARY_INV)
def nothing(x):
pass
cv.namedWindow('TOPHAT')
# 创建滑动条
cv.createTrackbar('ks', 'TOPHAT', 2, 25, nothing)
while True:
ks = cv.getTrackbarPos('ks', 'TOPHAT')
if ks < 1:
ks += 1
# Rectangular Kernel
rectKernel = cv.getStructuringElement(cv.MORPH_RECT, (ks, ks))
# Elliptical Kernel
ellKernel = cv.getStructuringElement(cv.MORPH_ELLIPSE, (ks, ks))
# Cross-shaped Kernel
crossKernel = cv.getStructuringElement(cv.MORPH_CROSS, (ks, ks))
rect = cv.morphologyEx(gray, cv.MORPH_TOPHAT, rectKernel)
ellip = cv.morphologyEx(gray, cv.MORPH_TOPHAT, ellKernel)
cross = cv.morphologyEx(gray, cv.MORPH_TOPHAT, crossKernel)
# cv.putText(rect, 'rect:' + str(ks), (80, 20), cv.FONT_HERSHEY_SIMPLEX, .65, (255, 255, 255), 2)
# cv.putText(ellip, 'ellip:' + str(ks), (80, 20), cv.FONT_HERSHEY_SIMPLEX, .65, (255, 255, 255), 2)
# cv.putText(cross, 'cross:' + str(ks), (80, 20), cv.FONT_HERSHEY_SIMPLEX, .65, (255, 255, 255), 2)
# cv.putText(cross, 'cross:' + str(ks), (80, 20), cv.FONT_HERSHEY_SIMPLEX, .65, (255, 255, 255), 2)
h1 = np.hstack((gray, rect))
h2 = np.hstack((ellip, cross))
cv.imshow('TOPHAT', np.vstack((h1, h2)))
k = cv.waitKey(100) & 0xff
if chr(k) == 'q':
break
if chr(k) == 's':
cv.imwrite('./outputs/rect_MORPH_TOPHAT' + str(ks) + '.jpg', rect)
4、礼帽加深理解
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import cv2 as cv
import numpy as np
# 礼帽 == 原图减开运算
kernel = np.ones((3, 3), np.uint8)
eg = np.array(range(0, 25), np.uint8).reshape(5, 5)
print('原矩阵')
print(eg)
print('*' * 60)
tophat_rect = cv.morphologyEx(eg, cv.MORPH_TOPHAT, kernel)
print('礼帽结果')
print(tophat_rect)
print('*' * 60)
erode = cv.erode(eg, kernel)
print('腐蚀结果')
print(erode)
print('*' * 60)
dilate = cv.dilate(erode, kernel)
print('先腐蚀后膨胀结果==开运算')
print(dilate)
print('原图减开运算结果')
print(eg - dilate)
5、黑帽
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import cv2 as cv
import numpy as np
"""
开运算:先腐蚀后膨胀, 去除噪声,去除白色小点、空洞
闭运算:先膨胀后腐蚀, 用来填充前景物体的小黑点
形态学梯度:膨胀减去腐蚀, 可以得到前景物体的轮廓
礼帽:原图减去开运算
黑帽:闭运算减去原图
使用函数morphologyEx()进行形态学其他操作
函数原型为:morphologyEx(src, op, kernel[, dst[, anchor[, iterations[, borderType[, borderValue]]]]]) -> dst
op参数:
cv.MORPH_OPEN:开运算
cv.MORPH_CLOSE:闭运算
cv.MORPH_GRADIENT:形态学梯度
cv.MORPH_TOPHAT:礼帽
cv.MORPH_BLACKHAT:黑帽
kernel:内核或结构化内核大小
使用getStructuringElement(shape, ksize[, anchor]) -> retval获得结构化内核
shape:
cv.MORPH_RECT 矩形结构化核
cv.MORPH_ELLIPSE 椭圆结构化核
cv.MORPH_CROSS 交叉结构化核
ksize:
指定结构化核大小
anchor:默认为Point(-1,-1),内核中心点。省略时为默认值
anchor:默认为Point(-1,-1),内核中心点。省略时为默认值。
iterations:腐蚀次数。省略时为默认值1。
borderType:推断边缘类型,具体参见borderInterpolate函数。默认值为BORDER_DEFAULT 边缘值拷贝
borderValue:边缘值,具体可参见createMorphoogyFilter函数,可省略
"""
'''
结构化元素
# Rectangular Kernel
>>> cv.getStructuringElement(cv.MORPH_RECT,(5,5))
array([[1, 1, 1, 1, 1],
[1, 1, 1, 1, 1],
[1, 1, 1, 1, 1],
[1, 1, 1, 1, 1],
[1, 1, 1, 1, 1]], dtype=uint8)
# Elliptical Kernel
>>> cv.getStructuringElement(cv.MORPH_ELLIPSE,(5,5))
array([[0, 0, 1, 0, 0],
[1, 1, 1, 1, 1],
[1, 1, 1, 1, 1],
[1, 1, 1, 1, 1],
[0, 0, 1, 0, 0]], dtype=uint8)
# Cross-shaped Kernel
>>> cv.getStructuringElement(cv.MORPH_CROSS,(5,5))
array([[0, 0, 1, 0, 0],
[0, 0, 1, 0, 0],
[1, 1, 1, 1, 1],
[0, 0, 1, 0, 0],
[0, 0, 1, 0, 0]], dtype=uint8)
'''
img = cv.imread('bkrc.jpg')
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
# ret, thresh = cv.threshold(gray, 200, 255, cv.THRESH_BINARY)
ret, thresh = cv.threshold(gray, 200, 255, cv.THRESH_BINARY_INV)
def nothing(x):
pass
cv.namedWindow('BLACKHAT')
# 创建滑动条
cv.createTrackbar('ks', 'BLACKHAT', 2, 25, nothing)
while True:
ks = cv.getTrackbarPos('ks', 'BLACKHAT')
if ks < 1:
ks += 1
# Rectangular Kernel
rectKernel = cv.getStructuringElement(cv.MORPH_RECT, (ks, ks))
# Elliptical Kernel
ellKernel = cv.getStructuringElement(cv.MORPH_ELLIPSE, (ks, ks))
# Cross-shaped Kernel
crossKernel = cv.getStructuringElement(cv.MORPH_CROSS, (ks, ks))
rect = cv.morphologyEx(thresh, cv.MORPH_BLACKHAT, rectKernel)
ellip = cv.morphologyEx(thresh, cv.MORPH_BLACKHAT, ellKernel)
cross = cv.morphologyEx(thresh, cv.MORPH_BLACKHAT, crossKernel)
cv.putText(rect, 'rect:' + str(ks), (80, 20), cv.FONT_HERSHEY_SIMPLEX, .65, (255, 255, 255), 2)
cv.putText(ellip, 'ellip:' + str(ks), (80, 20), cv.FONT_HERSHEY_SIMPLEX, .65, (255, 255, 255), 2)
cv.putText(cross, 'cross:' + str(ks), (80, 20), cv.FONT_HERSHEY_SIMPLEX, .65, (255, 255, 255), 2)
cv.putText(cross, 'cross:' + str(ks), (80, 20), cv.FONT_HERSHEY_SIMPLEX, .65, (255, 255, 255), 2)
h1 = np.hstack((thresh, rect))
h2 = np.hstack((ellip, cross))
cv.imshow('BLACKHAT', np.vstack((h1, h2)))
k = cv.waitKey(100) & 0xff
if chr(k) == 'q':
break
6、黑帽加深理解
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import cv2 as cv
import numpy as np
# 黑帽 == 闭运算减原图
kernel = np.ones((3, 3), np.uint8)
eg = np.array(range(0, 25), np.uint8).reshape(5, 5)
print('原矩阵')
print(eg)
print('*' * 60)
tophat_rect = cv.morphologyEx(eg, cv.MORPH_BLACKHAT, kernel)
print('黑帽结果')
print(tophat_rect)
print('*' * 60)
dilate = cv.dilate(eg, kernel)
print('膨胀结果')
print(dilate)
print('*' * 60)
erode = cv.erode(dilate, kernel)
print('先膨胀后腐蚀结果==闭运算')
print(erode)
print('*' * 60)
print('闭运算减原图结果')
print(erode - eg)
7、综合对比
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import cv2 as cv
import numpy as np
# img_path = 'bkrc.jpg'
img_path = 'shape.png'
img = cv.imread(img_path)
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
def nothing(x):
pass
cv.namedWindow('image')
cv.createTrackbar('th', 'image', 127, 255, nothing)
cv.createTrackbar('ks', 'image', 2, 25, nothing)
while True:
ks = cv.getTrackbarPos('ks', 'image')
th = cv.getTrackbarPos('th', 'image')
ret, threash = cv.threshold(gray, th, 255, cv.THRESH_BINARY_INV)
temp = threash
kernel = np.ones((ks, ks), np.uint8)
key = cv.waitKey(100) & 0xFF
if chr(key) == 'q':
break
# 开运算:先腐蚀再膨胀就叫做开运算,用来去噪声。
opening = cv.morphologyEx(threash, cv.MORPH_OPEN, kernel)
cv.putText(opening, 'open:' + str(ks), (80, 20), cv.FONT_HERSHEY_SIMPLEX, .65, (255, 255, 255), 2)
# 先膨胀再腐蚀,它经常用来填充前景物体中的小洞 或者前景物体上的小黑点。
close = cv.morphologyEx(threash, cv.MORPH_CLOSE, kernel)
cv.putText(close, 'close:' + str(ks), (80, 20), cv.FONT_HERSHEY_SIMPLEX, .65, (255, 255, 255), 2)
# 形态学梯度
# 其实就是一幅图像膨胀与腐的差别。
# 结果看上去就像前景物体的轮廓。
gradient = cv.morphologyEx(threash, cv.MORPH_GRADIENT, kernel)
cv.putText(gradient, 'grad:' + str(ks), (80, 20), cv.FONT_HERSHEY_SIMPLEX, .65, (255, 255, 255), 2)
# 礼帽
# 原始图像与开运算之后得到的图像的差。
tophat = cv.morphologyEx(threash, cv.MORPH_TOPHAT, kernel)
cv.putText(tophat, 'tophat:' + str(ks), (80, 20), cv.FONT_HERSHEY_SIMPLEX, .65, (255, 255, 255), 2)
# 黑帽 进行闭运算之后得到的图像与原始图像的差
blackhat = cv.morphologyEx(threash, cv.MORPH_BLACKHAT, kernel)
cv.putText(blackhat, 'bkhat:' + str(ks), (80, 20), cv.FONT_HERSHEY_SIMPLEX, .65, (255, 255, 255), 2)
cv.putText(threash, 'th:' + str(th), (80, 20), cv.FONT_HERSHEY_SIMPLEX, .65, (255, 255, 255), 2)
h1 = np.hstack((threash, opening, close))
h2 = np.hstack((gradient, tophat, blackhat))
v = np.vstack((h1, h2))
cv.imshow('image', v)
cv.destroyWindow('image')