TensorFlow——神经网络非线性回归

1、非线性回归

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt

# 使用numpy 生成200个随机点,范围在-0.5--0.5之间,产生了200行1列的矩阵
# newaxis = None
x_data = np.linspace(-0.5, 0.5, 200)[:, np.newaxis]

# 产生随机噪声
noise = np.random.normal(0, 0.01, x_data.shape)

# 给y_data 加入噪声
y_data = np.square(x_data) + noise

plt.scatter(x_data, y_data)
plt.show()

# 定义两个placeholder
x = tf.placeholder(tf.float32, [None, 1])
y = tf.placeholder(tf.float32, [None, 1])

# 定义神经网络的中间层,中间层的权值为1行10列的矩阵
Weights_L1 = tf.Variable(tf.random_normal([1, 10]))
# 产生偏置值
biases_L1 = tf.Variable(tf.zeros([1, 10]))
# 预测结果:y = x * w + b
Wx_plus_b_L1 = tf.matmul(x, Weights_L1) + biases_L1

# 激活函数使用tanh
L1 = tf.nn.tanh(Wx_plus_b_L1)

# 定义输出层,权重为10行1列
Weights_L2 = tf.Variable(tf.random_normal([10, 1]))
biases_L2 = tf.Variable(tf.zeros([1, 1]))
Wx_plus_b_L2 = tf.matmul(L1, Weights_L2) + biases_L2
prediction = tf.nn.tanh(Wx_plus_b_L2)

# 二次代价函数
loss = tf.reduce_mean(tf.square(y - prediction))
# 使用梯度下降法进行训练
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    for _ in range(3000):
        sess.run(train_step, feed_dict={x: x_data, y: y_data})
    # 获取预测值
    prediction_value = sess.run(prediction, feed_dict={x: x_data})

    # 画图
    plt.figure()
    # 绘制散点图
    plt.scatter(x_data, y_data)
    plt.plot(x_data, prediction_value, 'r-', lw=5)
    plt.show()

 

©️2020 CSDN 皮肤主题: 我行我“速” 设计师:Amelia_0503 返回首页