基于MATLAB的Rossler系统随参数变化的研究

摘要:
通过对一类特殊的Rossler系统的定性分析与计算机模拟, 研究了这类Rossler系统在参数影响下的各种变化。
关键词 : Rossler系统;混沌;MATLAB仿真

1、引言

混沌现象是近年来科学界关注的重点问题之一, 研究混沌有着重要的现实和理论上的意义。Rossler系统是非线性动力学中最有名的方程之一, 有着广泛的物理背景和工程背景。1976 年,Rossler首先给出了方程:
在这里插入图片描述
x’,y’和z’表示对自变量时间t求导数。(x,y,z)表示系统的状态。a,b,c,是系统参数。方程看上去很简单,除去第三个方程中的二次项zx,则系统是线性的。但事实是,这个简单系统存在混沌行为。

2、对方程的定性分析
在这里插入图片描述
当a>0时,系统矩阵的特征值λ=(a+√(a^2-4))/4,这个方程代表负阻尼振子的振动情况,其中至少有一个特征值的实部大于零,它的轨迹从原点附近向外扩散,越来越大。
我们再来考虑第三个方程中的阻尼项,如果没有该项,轨线会跑向无穷远处,但是因为有了该项, 我们取c的值为正,当x>c时,z的系数变为正,我们取b为正值,此时bx为正, 这使第三个方程变得非常不稳定。非线性项和bx起作用的结果是使z值增大,而z增大又会使x减小,因为z增大后,第一个方程中右端变小,成为负值,于是 x减小。x逐渐变小,当小于c时, 这样又会使z变小,相轨道逐渐落入(x,y)平面,并接近原点。这时第三个方程又起次要作用,而第一个方程起到支配作用。所以从定性上分析,轨道应该是这样:在(x,y)平面上拉伸,在z 轴方向折叠,两个子系统耦合在一起(通过非线性项),子系统的稳定性交替变化,相互制约。

3、参数对方程的影响

方程中的各个变量可以振荡,其主要原因就是式中有了xz这样的非线性项,即振荡是由于非线性引起的。这种振荡依赖于3个参数的取值,在本文中我们就来研究参数的变化会引起的周期的或非周期的振荡(混沌) 。
我们固定b=0.2,c=5,取初值为(4,-4,5),通过下面的时间响应图和相图,我们可以明显的看到伴随着a的增大,Rossler系统发生的变化。
首先,分别取a=0和a=0.01时的变化情况。当a=0时,我们从图上可以看到,[x1,x2,x3]较快的收敛到了一点,而a=0.03,[x1,x2,x3]收敛到了一个极限环。
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
图3和图4分别是a =0. 1和a =0. 3时的时间响应图和相图.我们可以看到,当a =0. 1时,[ x 1 , x2 , x 3]是向外发散的,但它还是趋向于一个极限环。但是当a = 0. 3时,系统的轨线变的杂乱无章,系统进入了混沌状态。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
4、倍周期分岔

在动力系统演化过程中的某些关节点上,系统的定态行为可能发生性质的改变,原来的稳定定态变成不稳定定态,同时出现新的更多的定态,这种现象叫作“分岔”。分岔是由运动方程中参数的变化引起的,分岔序列又往往是出现混沌的先兆,最终导致混沌。
倍周期分岔过程是一条通往混沌的典型道路,通过倍周期分岔到达混沌现象的过程中,会依次经过单周期,2周期,4周期,8周期等数量以翻数形式进行。
下图给出了系统的不同周期轨,当a=0.1,0.15,0.16,0.166分别处于单周期,2周期,4周期和8周期状态。
在这里插入图片描述
在这里插入图片描述
5、结论

(1)在混沌态Rossler系统的相图曲线对初值高度敏感,其行为不可预测,呈现随机性,即在长时间运动后一个确定的运动变成无法预言的随机行为。这种对初始条件的敏感性和对未来的无法预见性,是混沌解的显著特征。
(2)随着参数的变化,Rossler系统通过倍周期分岔逐步走向混沌。
(3)在混沌态,Rossler系统的相轨迹局部不稳定,但全局稳定,相轨迹始终被限制在相图中的某一区域。表现出典型的吸引子特征。混沌系统看似无序。却有着内在的深层次规律性。

6、程序代码

(1)rossler.m

function dy=rossler(t,y)
%%rossler
a=0.3;b=0.2;c=5.0;
dy=[-(y(2)+y(3));y(1)+a*y(2);b+y(1)*y(3)-c*y(3)];
end

(2)ross.m

x0=[4;-4;5];
tspan=[0:0.001:1000];
[T,X]=ode45('rossler',tspan,x0);
figure(1);
subplot(3,1,1),plot(T,X(:,1),'r');
xlabel('t');
ylabel('x');
subplot(3,1,2),plot(T,X(:,2),'r');
xlabel('t');
ylabel('y');
subplot(3,1,3),plot(T,X(:,3),'r');
xlabel('t');
ylabel('z');

figure(2);
plot(X(30000:end,1),X(30000:end,2));%grid;
xlabel(' x');
ylabel(' y');

figure(3);
plot(X(30000:end,1),X(30000:end,3));%grid;
xlabel(' x');
ylabel(' z');

figure(4);
plot(X(30000:end,2),X(30000:end,3));%grid;
xlabel(' y');
ylabel(' z');

figure(5);
plot3(X(30000:end,1),X(30000:end,2),X(30000:end,3));%grid;
xlabel(' x');
ylabel(' y');
zlabel(' z');

参考文献:
[1]黄润生,黄浩,编著.混沌及其应用[M].武汉大学出版社,2005.
[2]王晓艳.非线性混沌电路的分析与设计[D].哈尔滨工程大学,2010.
[3]刘 锋,穆肇骊,邱祖廉.Rossler混沌系统脉冲同步[J].物理学报,1999,48(7):1198-1204

  • 1
    点赞
  • 0
    评论
  • 16
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值