【NOJ1006】【算法实验二】堡垒问题

1006.堡垒问题

时限:1000ms 内存限制:10000K 总时限:3000ms
描述
城堡是一个4×4的方格,为了保卫城堡,现需要在某些格子里修建一些堡垒。城堡中的某些格子是墙,其余格子都是空格,堡垒只能建在空格里,每个堡垒都可以向上下左右四个方向射击,如果两个堡垒在同一行或同一列,且中间没有墙相隔,则两个堡垒都会把对方打掉。问对于给定的一种状态,最多能够修建几个堡垒。

输入
每个测例以一个整数n(1<=n<=4)开始,表示城堡的大小。接下来是n行字符每行n个,‘X’表示该位置是墙,‘.’表示该位置是空格。n等于0标志输入结束。

输出
每个测例在单独的一行输出一个整数:最多修建堡垒的个数。

输入样例
4
.X…

XX…

2
XX
.X
3
.X.
X.X
.X.
3

.XX
.XX
4




0

输出样例
5
1
5
2
4

#include <iostream>
 
using namespace std;

char map[4][4];    //城堡
int n;  //城堡边长
int maxn;   //最多城堡个数
int curn;   //当前已修建的城堡个数

void dfs(int m);    //搜索第m个格子,从0开始一行一行编号
bool canbuild(int x, int y);   //map[x][y]这一格能否修建城堡
 
int main()
{
    while(cin>>n&&n)
    {
        //数据输入
        for(int i=0; i<n; i++)
        {
            for(int j=0; j<n; j++)
            {
                cin>>map[i][j];
            }
        }
        //初始化
        maxn=curn=0;
        //算法执行
        dfs(0);
        //结果输出
        cout<<maxn<<endl;
    }
    return 0;
}
 
 
void dfs(int m)
{
    if(m==n*n)  //所有格子都搜完
    {
        maxn=max(maxn, curn);
    }
    else
    {
        int x=m/n;  //行
        int y=m%n;  //列
        if(canbuild(x, y))  //判断fort[x][y]这个格子能否修建城堡
        {
            curn++;
            map[x][y]='O'; //在此处修建城堡
            dfs(m+1);
            curn--;
            map[x][y]='.'; //还原
        }
        dfs(m+1);
    }
}
 
bool canbuild(int x, int y)    //判断fort[x][y]这个格子能否修建城堡
{
    if(map[x][y]=='X')     //本格是墙
    {
        return false;
    } 
    for(int i=x-1; i>=0; i--)   //向上搜索同列元素
    {
        if(map[i][y]=='O')     //若同列有城堡则返回false
        {
            return false;
        }
        if(map[i][y]=='X')     //遇到墙则跳出
        {
            break;
        }
    } 
    for(int i=y-1; i>=0; i--)   //向左搜索同行元素
    {
        if(map[x][i]=='O')     //若同行有城堡则返回false
        {
            return false;
        }
        if(map[x][i]=='X')     //遇到墙则跳出
        {
            break;
        }
    }
    return true;
}
哈夫曼编码是一种常用的数据压缩算法,可以将原始数据转换为更短的编码,从而减少存储空间。它的基本思想是:根据字符出的频率,构建一颗叉树,使得出频率高的字符离根节点近,出频率低的字符离根节点远。然后,对于每个字符,从根节点出发,沿着对应的路径到达该字符所在的叶子节点,记录下路径,作为该字符的编码。 哈夫曼编码的具体实步骤如下: 1. 统计每个字符在原始数据的频率。 2. 根据字符的频率构建哈夫曼树。构建方法可以采用贪心策略,每次选择出频率最低的两个字符,将它们作为左右子节点,父节点的权值为两个子节点的权值之和。重复这个过程,直到只剩下一个根节点。 3. 对哈夫曼树进行遍历,记录下每个字符的编码,为了避免编码产生歧义,通常规定左子节点为0,右子节点为1。 4. 将原始数据的每个字符,用它对应的编码来代替。这一步可以通过哈夫曼树来实。 5. 将编码后的数据存储起来。此时,由于每个字符的编码长度不同,所以压缩后的数据长度也不同,但总体上来说,压缩效果通常是比较好的。 实哈夫曼编码的关键在于构建哈夫曼树和计算每个字符的编码。构建哈夫曼树可以采用优先队列来实,每次从队列取出两个权值最小的节点,合并成一个节点,再将合并后的节点插入队列。计算每个字符的编码可以采用递归遍历哈夫曼树的方式,从根节点出发,如果走到了左子节点,则将0添加到编码,如果走到了右子节点,则将1添加到编码,直到走到叶子节点为止。 以下是基于C++的代码实,供参考: ```c++ #include <iostream> #include <queue> #include <string> #include <unordered_map> using namespace std; // 定义哈夫曼树节点的结构体 struct Node { char ch; // 字符 int freq; // 出频率 Node* left; // 左子节点 Node* right; // 右子节点 Node(char c, int f) : ch(c), freq(f), left(nullptr), right(nullptr) {} }; // 定义哈夫曼树节点的比较函数,用于优先队列的排序 struct cmp { bool operator() (Node* a, Node* b) { return a->freq > b->freq; } }; // 构建哈夫曼树的函数 Node* buildHuffmanTree(unordered_map<char, int> freq) { priority_queue<Node*, vector<Node*>, cmp> pq; for (auto p : freq) { pq.push(new Node(p.first, p.second)); } while (pq.size() > 1) { Node* left = pq.top(); pq.pop(); Node* right = pq.top(); pq.pop(); Node* parent = new Node('$', left->freq + right->freq); parent->left = left; parent->right = right; pq.push(parent); } return pq.top(); } // 遍历哈夫曼树,计算每个字符的编码 void calcHuffmanCode(Node* root, unordered_map<char, string>& code, string cur) { if (!root) return; if (root->ch != '$') { code[root->ch] = cur; } calcHuffmanCode(root->left, code, cur + "0"); calcHuffmanCode(root->right, code, cur + "1"); } // 将原始数据编码成哈夫曼编码 string encode(string s, unordered_map<char, string> code) { string res; for (char c : s) { res += code[c]; } return res; } // 将哈夫曼编码解码成原始数据 string decode(string s, Node* root) { string res; Node* cur = root; for (char c : s) { if (c == '0') { cur = cur->left; } else { cur = cur->right; } if (!cur->left && !cur->right) { res += cur->ch; cur = root; } } return res; } int main() { string s = "abacabad"; unordered_map<char, int> freq; for (char c : s) { freq[c]++; } Node* root = buildHuffmanTree(freq); unordered_map<char, string> code; calcHuffmanCode(root, code, ""); string encoded = encode(s, code); string decoded = decode(encoded, root); cout << "Original string: " << s << endl; cout << "Encoded string: " << encoded << endl; cout << "Decoded string: " << decoded << endl; return 0; } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值