【NOJ1045】【算法实验三】六数码问题

1045.六数码问题

时限:1000ms 内存限制:10000K 总时限:3000ms
描述
现有一两行三列的表格如下:

A B C
D E F

把1、2、3、4、5、6六个数字分别填入A、B、C、D、E、F格子中,每个格子一个数字且各不相同。每种不同的填法称为一种布局。如下:

1 3 5
2 4 6
布局1

2 5 6
4 3 1
布局2

定义α变换如下:把A格中的数字放入B格,把B格中的数字放入E格,把E格中的数字放入D格,把D格中的数字放入A格。
定义β变换如下:把B格中的数字放入C格,把C格中的数字放入F格,把F格中的数字放入E格,把E格中的数字放入B格。

问:对于给定的布局,可否通过有限次的α变换和β变换变成下面的目标布局:

1 2 3
4 5 6
目标布局

输入
本题有多个测例,每行一个,以EOF为输入结束标志。每个测例的输入是1到6这六个数字的一个排列,空格隔开,表示初始布局ABCDEF格中依次填入的数字。

输出
每个输出占一行。可以转换的,打印Yes;不可以转换的,打印No。

输入样例
1 3 5 2 4 6
2 5 6 4 3 1

输出样例
No
Yes

#include<iostream>
#include<math.h>
#include<queue>

using namespace std;

int visited[1000000];
struct state
{
	int table[6];
	int num;
}start,target;

queue<state>q;
/*****************/
int charToNum(state x)
{
	x.num=0;
	int j;
	for(j=0;j<6;j++)
	{
		x.num+=x.table[j]*pow(10,5-j);
	}
	return x.num;
}
/*****************/
state operate(state now,int i)
{
	state next;
	switch(i)
	{
		case 0: //a
		{
			next.table[0]=now.table[3]; //A
			next.table[1]=now.table[0]; //B           
			next.table[2]=now.table[2]; //C         
			next.table[3]=now.table[4]; //D     
			next.table[4]=now.table[1]; //E    
			next.table[5]=now.table[5]; //F 
			break;   
		}
		case 1: //b
		{
			next.table[0]=now.table[0];  //A	
			next.table[1]=now.table[4];  //B
			next.table[2]=now.table[1];  //C
			next.table[3]=now.table[3];  //D
			next.table[4]=now.table[5];  //E
		    next.table[5]=now.table[2];  //F
		    break;
		}
	}
	next.num=charToNum(next);
	return next;
}
/*****************/
void init()
{	
	int i,j,k;
	for(i=1;i<6;i++)
	{
		cin>>start.table[i];
	}
	//start.num=charToNum(start);
	memset(visited,0,sizeof(visited));
	q.push(start);
	//cout<<start.num<<endl;
	visited[start.num]=1;
	for(k=0;k<6;k++)
		target.table[k]=k+1;
	target.num=123456;
	
}
/*****************/
int bfs()
{
	state now,next;
	while(!q.empty())
	{
		now=q.front();
		q.pop();
		int i;
		for(i=0;i<2;i++) //0-a;1-b
		{
			next=operate(now,i);
			if(!visited[next.num])
			{
				visited[next.num]=1;
				if(next.num==target.num)
					return 1;
				else
					q.push(next);	
			}
		}
	}
	return 0;
}
/*****************/
int main()
{
	while(scanf("%d",&start.table[0])!=EOF)
	{
		init();
		if(bfs())
			cout<<"Yes"<<endl;
		else
			cout<<"No"<<endl;
			
		while(!q.empty())q.pop();
	}
	return 0;
}
哈夫曼编码是一种常用的数据压缩算法,可以将原始数据转换为更短的编码,从而减少存储空间。它的基本思想是:根据字符出现的频率,构建一颗二叉树,使得出现频率高的字符离根节点近,出现频率低的字符离根节点远。然后,对于每个字符,从根节点出发,沿着对应的路径到达该字符所在的叶子节点,记录下路径,作为该字符的编码。 哈夫曼编码的具体实现步骤如下: 1. 统计每个字符在原始数据出现的频率。 2. 根据字符的频率构建哈夫曼树。构建方法可以采用贪心策略,每次选择出现频率最低的两个字符,将它们作为左右子节点,父节点的权值为两个子节点的权值之和。重复这个过程,直到只剩下一个根节点。 3. 对哈夫曼树进遍历,记录下每个字符的编码,为了避免编码产生歧义,通常规定左子节点为0,右子节点为1。 4. 将原始数据的每个字符,用它对应的编码来代替。这一步可以通过哈夫曼树来实现。 5. 将编码后的数据存储起来。此时,由于每个字符的编码长度不同,所以压缩后的数据长度也不同,但总体上来说,压缩效果通常是比较好的。 实现哈夫曼编码的关键在于构建哈夫曼树和计算每个字符的编码。构建哈夫曼树可以采用优先队来实现,每次从队取出两个权值最小的节点,合并成一个节点,再将合并后的节点插入队。计算每个字符的编码可以采用递归遍历哈夫曼树的方式,从根节点出发,如果走到了左子节点,则将0添加到编码,如果走到了右子节点,则将1添加到编码,直到走到叶子节点为止。 以下是基于C++的代码实现,供参考: ```c++ #include <iostream> #include <queue> #include <string> #include <unordered_map> using namespace std; // 定义哈夫曼树节点的结构体 struct Node { char ch; // 字符 int freq; // 出现频率 Node* left; // 左子节点 Node* right; // 右子节点 Node(char c, int f) : ch(c), freq(f), left(nullptr), right(nullptr) {} }; // 定义哈夫曼树节点的比较函数,用于优先队的排序 struct cmp { bool operator() (Node* a, Node* b) { return a->freq > b->freq; } }; // 构建哈夫曼树的函数 Node* buildHuffmanTree(unordered_map<char, int> freq) { priority_queue<Node*, vector<Node*>, cmp> pq; for (auto p : freq) { pq.push(new Node(p.first, p.second)); } while (pq.size() > 1) { Node* left = pq.top(); pq.pop(); Node* right = pq.top(); pq.pop(); Node* parent = new Node('$', left->freq + right->freq); parent->left = left; parent->right = right; pq.push(parent); } return pq.top(); } // 遍历哈夫曼树,计算每个字符的编码 void calcHuffmanCode(Node* root, unordered_map<char, string>& code, string cur) { if (!root) return; if (root->ch != '$') { code[root->ch] = cur; } calcHuffmanCode(root->left, code, cur + "0"); calcHuffmanCode(root->right, code, cur + "1"); } // 将原始数据编码成哈夫曼编码 string encode(string s, unordered_map<char, string> code) { string res; for (char c : s) { res += code[c]; } return res; } // 将哈夫曼编码解码成原始数据 string decode(string s, Node* root) { string res; Node* cur = root; for (char c : s) { if (c == '0') { cur = cur->left; } else { cur = cur->right; } if (!cur->left && !cur->right) { res += cur->ch; cur = root; } } return res; } int main() { string s = "abacabad"; unordered_map<char, int> freq; for (char c : s) { freq[c]++; } Node* root = buildHuffmanTree(freq); unordered_map<char, string> code; calcHuffmanCode(root, code, ""); string encoded = encode(s, code); string decoded = decode(encoded, root); cout << "Original string: " << s << endl; cout << "Encoded string: " << encoded << endl; cout << "Decoded string: " << decoded << endl; return 0; } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值