GAMS建模技术案例01 求解简单的线性规划模型

目录

1.问题描述

2 GAMS代码要点

2.1 代码编写要点

2.2 案例源码

2.3 计算结果及报告解


1.问题描述

首先给出一个基本线性规划问题的计算案例

max: 30x_{1} + 100x_{2}-50x_{3}

subject to:

x_{1}+x_{2}+x_{3} \leq 7

4x_{1}+2x_{2}=40

10x_{1} + x_{3} >= 30

x_{1} \geq 0, x_{2} \in R, x_{3} \leq 0

2 GAMS代码要点

2.1 代码编写要点

  • 使用 * 表示注释文本
  • 定义变量
    • Positive Variable 表示定义非负变量
    • Negative Variable 表示定义非正变量
    • Binary Variable 表示定义二进制决策变量
    • Integer Variable 表示定义整数决策变量
    • Free Variable 表示定义正决策变量
  • 定义约束条件:
    • 使用 Equations 关键字,首先给出约束名称列表,各约束以逗号分隔,以分号结尾
    • 使用 =E= 、 =L= 和 =G= 分别表示 等式约束、小于等于约束、大于等于约束
    • 目标函数在等式中以额外的等式表示,等式一侧为目标自由变量,另一侧为目标表达式
  • 模型构建
    • 使用 Model 关键字开头,紧跟着模型的名字、模型包含的约束和目标等式
    • 使用 Options关键字定义模型类型和求解器
  • 求解模型
    • 使用 Solve 关键字开头的语句
    • 表达式为: Solve 模型名 using 模型类型 优化目标类型 目标变量
  • 结果展示
    • 使用Display关键字开头的语句

2.2 案例源码

* max: 30 x1 + 100 x2 - 50 x3
* subject to
*   x1 +  x2 + x3 <= 7
* 4 x1 + 2x2       = 40
* 10x1 +     + x3 >= 30
* x1 >=0, x2 \in R, x3 <= 0

Positive Variable x1;
Free Variable x2, z;
Negative Variable x3;

Equations
ConLE, ConEq, ConGE, Obj;
ConLE.. x1 +  x2 + x3 =L= 7;
ConEq.. 4*x1 + 2*x2   =E= 40;
ConGE.. 10*x1 + x3 =G= 30;
Obj.. z =E= 30*x1 + 100*x2 - 50*x3;
Model SampleProblem1 /ConLE, ConEq, ConGE, Obj/
Options LP = Cplex;
Solve SampleProblem1 using LP maximizing z;
Display x1.L, x2.L, x3.L, z.L;

2.3 计算结果及报告解读

计算结果中包含以下几个项目:

其含义如下:

  • 回显打印,将你输入的模型在报告中重新显示一边
  • Equation Listing 表示模型中用到的所有约束及目标函数
  • Column Listing 展示决策变量在不同等式中的系数
  • MODEL STATISTICS 统计模型中拥有的等式数目、变量数目;模型生成和执行的耗时信息
  • Solution Report 解的基本信息,包含模型的类型、求解器、状态、目标值等信息
  • Display 部分给出模型的最优值和最优解信息

VARIABLE x1.L                 =        3.909  
VARIABLE x2.L                 =       12.182  
VARIABLE x3.L                 =       -9.091  
VARIABLE z.L                   =     1790.000  

 同时cong解的信息中,我们还可以看到我们用的这个案例有一个极方向:

Model has an unbounded ray.

**** ERRORS/WARNINGS IN EQUATION ConLE
     1 error(s): Unbounded equation (slack variable)

                           LOWER          LEVEL          UPPER         MARGINAL

---- EQU ConLE             -INF            7.0000         7.0000       -30.0000 UNBND
---- EQU ConEq             40.0000        40.0000        40.0000        65.0000      
---- EQU ConGE             30.0000        30.0000        +INF          -20.0000      
---- EQU Obj                 .              .              .             1.0000      

                           LOWER          LEVEL          UPPER         MARGINAL

---- VAR x1                  .             3.9091        +INF             .          
---- VAR x2                -INF           12.1818        +INF             .          
---- VAR z                 -INF         1790.0000        +INF             .          
---- VAR x3                -INF           -9.0909          .              .          


**** REPORT SUMMARY :        0     NONOPT
                             0 INFEASIBLE
                             1  UNBOUNDED (UNBND)

  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

weixin_45624300

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值