初始点与终止点在棋盘上然后动棋盘

Problem Description

Petya has a rectangular Board of size n×m. Initially, k chips are placed on the board, i-th chip is located in the cell at the intersection of sxi-th row and syi-th column.

In one action, Petya can move all the chips to the left, right, down or up by 1 cell.

If the chip was in the (x,y) cell, then after the operation:

left, its coordinates will be (x,y−1);
right, its coordinates will be (x,y+1);
down, its coordinates will be (x+1,y);
up, its coordinates will be (x−1,y).
If the chip is located by the wall of the board, and the action chosen by Petya moves it towards the wall, then the chip remains in its current position.

Note that several chips can be located in the same cell.

For each chip, Petya chose the position which it should visit. Note that it’s not necessary for a chip to end up in this position.

Since Petya does not have a lot of free time, he is ready to do no more than 2nm actions.

You have to find out what actions Petya should do so that each chip visits the position that Petya selected for it at least once. Or determine that it is not possible to do this in 2nm actions.

Input

The first line contains three integers n,m,k (1≤n,m,k≤200) — the number of rows and columns of the board and the number of chips, respectively.

The next k lines contains two integers each sxi,syi (1≤sxi≤n,1≤syi≤m) — the starting position of the i-th chip.

The next k lines contains two integers each fxi,fyi (1≤fxi≤n,1≤fyi≤m) — the position that the i-chip should visit at least once.

Output

In the first line print the number of operations so that each chip visits the position that Petya selected for it at least once.

In the second line output the sequence of operations. To indicate operations left, right, down, and up, use the characters L,R,D,U respectively.

If the required sequence does not exist, print -1 in the single line.

Examples

Input

3 3 2
1 2
2 1
3 3
3 2

Output

3
DRD

Input

5 4 3
3 4
3 1
3 3
5 3
1 3
1 4

Output

9
DDLUUUURR

大意:给你个范围,还有初始点和结束点,每次都可以移动所有点相同方向,问你在规定的步数范围内可以可以让每个点都到达各自的目标点至少一次。

历程:这道题耗费了我不少时间,当时那天上午家里有点事情,就没有进行考试,没有办法,只能晚上补题了呢,(菜 就要努力)
但是看到这道题目想都没想就进行模拟(真的猪脑子)奈何解题方法不对,出题方肯定会出各种数据卡你的(不过有善良出题方的)。

思路:由于每次规定的步数在2 * n * m 的范围内,我们可以吧所有的点都聚集到规定的范围内的角落中去,然后在使用 n * m 步 遍历每个点就可以了,思路比较清奇,第二份代码是我当时写的错误代码,以后可以回忆哈哈哈哈哈。

代码↓

#include <iostream>

using namespace std;

int n, m, k, x, y;

int main()
{
    cin >> n >> m >> k;
    
    for(int i = 1; i <= k ;i ++)
    {
        cin >> x >> y;
    }
    
    cout << n - 1 + m - 1 + n * (m - 1) + n - 1 << endl;
    
    for(int i = 1; i < n; i ++) printf("U");
    
    for(int i = 1; i < m; i ++) printf("R");
    
    for(int i = 1; i <= n; i ++)
    {
        for(int j = 1; j < m ; j ++)
        {
            if(i & 1) printf("L");
            else printf("R");
        }
        
        if(i != n)printf("D");
    }
    
}

又长又臭!

#include <iostream>

using namespace std;

const int N = 210;

typedef pair<int, int> PII;

char a[4] = { 'U', 'D', 'L', 'R' };

PII star[N], ed[N];

char opti[1000000];

int idx;

int main()
{
	int n, m, count; cin >> n >> m >> count;
	for (int i = 0; i < count * 2; i++)
	{
		int a, b; scanf("%d%d", &a, &b);

		if (i < count)star[i] = { a, b };
		else ed[i - count] = { a, b };
	}
	
	int pos = 0, sum = 0;
	while (1)
	{
		while (star[pos].first == ed[pos].first && star[pos].second == ed[pos].second && pos < count) pos++;
		if (pos == count) break;
		if (star[pos].first != ed[pos].first)
		{
			int flag = ed[pos].first - star[pos].first;
			for (int i = pos; i < count; i++)
			{
				if(flag > 0)
				{
				    if(star[i].first + 1 > n) star[i].first = n;
				    else star[i].first++;
				}
				else 
				{
				    if(star[i].first - 1 == 0) star[i].first = 1;
				    else star[i].first--;
				}
			}
			if (flag > 0)opti[idx++] = 'D';
			else opti[idx++] = 'U';
			sum++;
		}
		else
		{
			int flag = ed[pos].second - star[pos].second;
			for (int i = pos; i < count; i++)
			{
				if(flag > 0)
				{
				    if(star[i].second + 1 > m) star[i].second = m;
				    else star[i].second++;
				}
				else 
				{
				    if(star[i].second - 1 == 0) star[i].second = 1;
				    else star[i].second--;
				}
			}
			if (flag > 0)opti[idx++] = 'R';
			else opti[idx++] = 'L';
			sum++;
		}
	}
	printf("%d\n", idx);
	for (int i = 0; i < idx; i++)
	{
		printf("%c", opti[i]);
	}
    cout << endl;
	return 0;
}
发布了67 篇原创文章 · 获赞 14 · 访问量 2261
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: Age of Ai 设计师: meimeiellie

分享到微信朋友圈

×

扫一扫,手机浏览