Frobenius 范数

Frobenius范数是一种用于衡量矩阵大小的标准方法。具体来说,Frobenius范数 ∥ M ∥ F \|\mathbf{M}\|_F MF是通过矩阵 M \mathbf{M} M中所有元素的平方和再开方得到的。它的计算公式为:

∥ M ∥ F = ∑ i , j ∣ M i j ∣ 2 \|\mathbf{M}\|_F = \sqrt{\sum_{i,j} |\mathbf{M}_{ij}|^2} MF=i,jMij2

其中 M i j \mathbf{M}_{ij} Mij表示矩阵 M \mathbf{M} M中的第 i i i行第 j j j列的元素。

Frobenius范数有几个重要性质:

  1. 非负性 ∥ M ∥ F ≥ 0 \|\mathbf{M}\|_F \geq 0 MF0,并且当且仅当 M \mathbf{M} M是零矩阵时 ∥ M ∥ F = 0 \|\mathbf{M}\|_F = 0 MF=0
  2. 一致性:它与矩阵的所有元素相关,即使矩阵进行了转置,Frobenius范数也不变,即 ∥ M ∥ F = ∥ M ⊤ ∥ F \|\mathbf{M}\|_F = \|\mathbf{M}^\top\|_F MF=MF
  3. 次可加性:对于任意两个矩阵 A \mathbf{A} A B \mathbf{B} B,有 ∥ A + B ∥ F ≤ ∥ A ∥ F + ∥ B ∥ F \|\mathbf{A} + \mathbf{B}\|_F \leq \|\mathbf{A}\|_F + \|\mathbf{B}\|_F A+BFAF+BF

Frobenius范数在许多领域都有应用,包括数值分析、统计学和机器学习等,特别是在衡量矩阵的大小和比较不同矩阵的差异时非常有用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值