逆袭lzw
码龄5年
关注
提问 私信
  • 博客:7,577
    7,577
    总访问量
  • 5
    原创
  • 1,820,147
    排名
  • 4
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:湖南省
  • 加入CSDN时间: 2019-09-19
博客简介:

weixin_45663644的博客

查看详细资料
个人成就
  • 获得6次点赞
  • 内容获得2次评论
  • 获得42次收藏
创作历程
  • 6篇
    2022年
成就勋章
兴趣领域 设置
  • 人工智能
    神经网络数据分析
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

186人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

SpaGCN:整合基因表达、空间定位和组织学,通过图卷积网络识别空间域和空间可变基因

文献精度SpaGCN:整合基因表达、空间定位和组织学,通过图卷积网络识别空间域和空间可变基因
原创
发布博客 2022.11.20 ·
3039 阅读 ·
4 点赞 ·
0 评论 ·
26 收藏

TripHLApan:基于三重编码矩阵和转移学习预测HLA分子结合肽的情况

在本文中,我们提出了TripHLApan,一个新的泛特异性预测模型,用于HLA分子肽结合预测。TripHLApan通过整合三重编码矩阵、BiGRU+Attention模型和转移学习策略,表现出强大的预测能力。综合评估表明,TripHLApan在不同测试环境下预测HLA-I和HLA-II肽结合的有效性。在最新的数据集中,HLA-I的预测能力得到了进一步证明。此外,我们表明TripHLApan在一个黑色素瘤患者的样本中具有很强的结合重组能力。总之,TripHLApan是预测HLA-I和HLA-II分子肽的结合的
翻译
发布博客 2022.11.10 ·
576 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

文献精度:通过卷积神经网络改进新抗原的识别

APPM在大型质谱(MS)HLA-肽数据集上进行了训练,并用独立的MS基准进行了评估。结果显示,APPM在阳性预测值(PPV)方面优于免疫表位数据库(IEDB)推荐的方法(0.40 vs. 0.22),在结合这两种方法后,预测值将进一步提高(PPV=0.51)。我们进一步将我们的模型应用于预测来自共识驱动突变的新抗原,并确定了16000个具有 "驱动 "特征的推定新抗原。
原创
发布博客 2022.11.09 ·
759 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

MATHLA:集成双向LSTM和多头部注意力机制的HLA-肽结合预测的强大框架

文献精度网络部分MATHLA:集成双向LSTM和多头部注意力机制的HLA-肽结合预测的强大框架
原创
发布博客 2022.11.07 ·
1334 阅读 ·
2 点赞 ·
0 评论 ·
7 收藏

Python报错:TypeError: ‘Accumulator‘ object is not subscriptable

出现报错TypeError‘Accumulator’objectisnotsubscriptable。经过修改,原因为在使用对象数组时,不要直接用’对象名.[i]',修改为‘对象名.data[i]’。在学习李沐老师的《动手学深度学习PyTorch版》的从零开始实现Softmax小结时出现此问题。metric=Accumulator(2)#设置两个累加器,累计正确的预测数和预测总数。定义了累加器类Accumulator,及类的对象数组。在‘n’个变量上累加。......
原创
发布博客 2022.07.16 ·
1029 阅读 ·
0 点赞 ·
2 评论 ·
2 收藏

强化学习(一)---马尔科夫决策过程

一、马尔科夫过程 在一个时序过程中,如果 t + 1 时刻的状态仅取决于 t 时刻的状态 St 而与 t 时刻之前的任 何状态都无关时,则认为 t 时刻的状态 St 具有马尔科夫性 。若过程中的每一 个状态都具有马尔科夫性则这个过程具备马尔科夫性。具备了马尔科夫性的随机过程称为马尔科夫过程。通常使用元组<S,P>来描述马尔科夫过程。S为状态集,P为状态专业概率矩阵,其中元素的值为当前状态到下续任意可能状态的概率。状态转移序列叫状态序列也叫采样。状态序列的最后一个状态为终止...
原创
发布博客 2022.05.08 ·
807 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏