把有限域学透彻

说到域,其实应该先从群和环说起


在这里记一下我一直搞混的数集和表示符号:

  1. 自然数集—N
  2. 整数集 —Z     正整数集—N^{+}(就是不包含0的自然数集)
  3. 有理数集—Q
  4. 实数集—R
  5. 复数集—C


那就先聊聊

群的概念:假设G是一个非空集合,它里边的所有元素应该满足某种结合法(或者称满足某种运算),当结合法满足三个条件的时候,我们就可以称 G为一个群:

这三个条件是:(1)结合律,即对于任意的a,b,c\in G,都有\left ( ab \right )c=a\left ( bc \right )

                             (2)单位元,即存在一个元素e\in G,使得对任意的a\in G,都有ae=ea=a

                                 (3)可逆性,即对任意的a\in G,都存在a{}'\in G,使得aa{}'=a{}'a=e

群的性质:群G的元素个数叫做群G的阶,记做\left | G \right |,当\left | G \right |为有限数时,G叫做有限群。

                 如果群G的结合法还满足交换律,即对于任意的a,b\in G,都有ab=ba,那么G成为交换群或阿贝尔(Abel)群。


接下来再说

环的定义:设R是具有两种结合法(加法和乘法)的非空集合,如果满足以下条件,可以称为环:

              条件(1)R对于加法构成一个交换群;

                           (2)结合律:对于任意的a,b,c\in R,有\left ( ab \right )c=a(bc);

                                   (3)分配律:对于任意的a,b,c\in R,有\left ( a+b \right )c=ac+bca\left ( b+c \right )=ab+ac

        满足以上三个条件,就称R为环。

也就是说,环在群的基础上加了一个运算,加上了加法和乘法之间的分配律。


最后再说回

  先讲一下域的定义,如下:

最后我的理解:

如果是存在一个环R,环R是一个交换环,就是满足乘法交换律,并且R中有单位元,并且每一个非零元都是可逆元。

也就是说::::R对于加法构成交换群,R中的非零元对于乘法构成一个交换群。


推荐一个北大丘维声教授讲的课,B站链接:https://www.bilibili.com/video/BV14t411875i/

感觉讲的不错,值得一听。

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值