【Wiztalk腾讯广告专场】系列分享来袭,第三期由清华大学计算机系副教授、博士生导师刘知远老师与清华大学计算机系硕士生周界为大家深度介绍 《基于图结构的事实验证》。
从浅显的文本处理走向推理和判断
随着自然语言处理(NLP)技术的逐渐发展成熟、文本语料数据的不断积累,我们能设计、训练出越来越强大的NLP模型,越来越多的语言相关任务也已经从人工转向了由NLP模型自动处理,各种语言互译的机器翻译就是最典型、最常见的例子。不过也有一些更高级的NLP应用需要的不仅是更多的语料数据,还需要更准确的语料数据,比如知识图谱建立、基于文本的开放问答,都需要文本语料真实、可信,才能得到好的结果。
在这样的背景下,**事实验证(Fact Verification)**这个问题近年来逐渐被重视起来。事实验证是指,给出一条陈述以后,要根据若干条线索判断这条陈述是“得到支持”的、“和证据不符”的、还是“信息不足无法判断”的,简单来说就是真假判断。
除了为其它的NLP应用服务以外,验明真伪这件事本身在这个自媒体发达、网络上的信息快速更新发酵的时代也有很大作用 —— 很多人根据大众的心理期待编造假消息,即便读者当时看得开心,但假消息始终都是不应当被鼓励的,也可能会对涉及到的人和事造成实际的伤害。
事实验证的难点
许多陈述的真假判断都需要基于多条不同的证据综合判断,这正是这个任务的难点。一个例子比如:
例1:
陈述: 电视剧《Giada at Home》只能通过购买DVD观看。
证据1:
最低0.47元/天 解锁文章
304

被折叠的 条评论
为什么被折叠?



