Flink的api入门案例

本文档详细介绍了使用Flink进行批处理和流式处理的API应用,包括Scala和Java两种语言的实现。从批处理API开始,通过读取文本文件进行单词计数,然后转向Java批处理API的相同操作。接着,展示了Scala和Java的流处理编程,从socket数据源读取数据。此外,还涵盖了将MySQL和Kafka作为Flink的数据源,最后讨论了Flink与旧版和新版Kafka API的集成。
摘要由CSDN通过智能技术生成

目录

1 批处理api开发(scala语言开发,记得创建一个maven工程之后就添加scala语言)

2 java的批处理

 3 scala的流式编程

4  java流式编程的代码

5 source (基本版本)

 6 mysq作为一个source

 7 kafka作为source

7.1 老版本的kafka的api

7.2 新版本的kafka基础版(就是偏移量就没自定义)

 7.3 新版本的升级版本,指定偏移量


环境:三台虚拟机 (qianfeng01:8081,qianfeng02:8081,qianfeng03:8081)

首先在一台虚拟机上运行

start-cluster.sh

这样flink就启动了

idea开发

pom.xml(这个版本号就根据自己机器的版本号修改,不同版本真的存在兼容性问题)

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>com.qianfeng</groupId>
    <artifactId>qianfeng-flink-v9</artifactId>
    <version>1.0</version>

    <!--自定义版本信息-->
    <properties>
        <java.version>1.8</java.version>
        <maven.compiler.source>1.8</maven.compiler.source>
        <maven.compiler.target>1.8</maven.compiler.target>
        <encoding>UTF-8</encoding>
        <scala.version>2.12.8</scala.version>
        <scala.compat.version>2.12</scala.compat.version>
        <hadoop.version>2.7.6</hadoop.version>
        <flink.version>1.14.3</flink.version>
        <kafka.version>2.4.1</kafka.version>
    </properties>


    <!--jar依赖-->
    <dependencies>
        <!--scala的依赖库-->
        <dependency>
            <groupId>org.scala-lang</groupId>
            <artifactId>scala-library</artifactId>
            <version>${scala.version}</version>
        </dependency>

        <!--Flink的client依赖-->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-clients_2.11</artifactId>
            <version>${flink.version}</version>
        </dependency>

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-scala_2.11</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-streaming-scala_2.11</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>mysql</groupId>
            <artifactId>mysql-connector-java</artifactId>
            <version>5.1.27</version>
        </dependency>

        <!--Flink的java的依赖-->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-java</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-streaming-java_2.11</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-connector-kafka_2.12</artifactId>
            <version>1.14.3</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-client</artifactId>
            <version>${hadoop.version}</version>
        </dependency>
    </dependencies>


</project>

1 批处理api开发(scala语言开发,记得创建一个maven工程之后就添加scala语言)

package com.qf.bigdata

import org.apache.flink.api.scala.{DataSet, ExecutionEnvironment}
import org.apache.flink.api.scala._
import org.apache.flink.core.fs.FileSystem
//批次处理的API单词的计数统计
object Demo01_BatchWCScala {
  def main(args: Array[String]): Unit = {
    // 创建flink执行入口
    val env = ExecutionEnvironment.getExecutionEnvironment
    //通过执行对象获取批次的数据
    val ds:DataSet[String]=env.readTextFile("data/test.txt")
    //处理数据
    val rs:DataSet[(String,Int)] = ds.flatMap(_.split(" "))
      .map((_,1))
      .groupBy(0)
      .sum(1)
      .print()    //默认就是执行了execute

  }

}

就是在工程的src文件夹同级建一个data文件夹,里面自定义一个文件,写单词

下图就是我的test.txt

 变形

 val rs:DataSet[(String,Int)] = ds.flatMap(_.split(" "))
      .map((_,1))
      .groupBy(0)
      .sum(1)
      //.print()    //默认就是执行了execute
    //添加并行度
      .setParallelism(1) //存在包的问题,就是降低

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值