目录
1 批处理api开发(scala语言开发,记得创建一个maven工程之后就添加scala语言)
环境:三台虚拟机 (qianfeng01:8081,qianfeng02:8081,qianfeng03:8081)
首先在一台虚拟机上运行
start-cluster.sh
这样flink就启动了
idea开发
pom.xml(这个版本号就根据自己机器的版本号修改,不同版本真的存在兼容性问题)
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion><groupId>com.qianfeng</groupId>
<artifactId>qianfeng-flink-v9</artifactId>
<version>1.0</version><!--自定义版本信息-->
<properties>
<java.version>1.8</java.version>
<maven.compiler.source>1.8</maven.compiler.source>
<maven.compiler.target>1.8</maven.compiler.target>
<encoding>UTF-8</encoding>
<scala.version>2.12.8</scala.version>
<scala.compat.version>2.12</scala.compat.version>
<hadoop.version>2.7.6</hadoop.version>
<flink.version>1.14.3</flink.version>
<kafka.version>2.4.1</kafka.version>
</properties>
<!--jar依赖-->
<dependencies>
<!--scala的依赖库-->
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-library</artifactId>
<version>${scala.version}</version>
</dependency><!--Flink的client依赖-->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-clients_2.11</artifactId>
<version>${flink.version}</version>
</dependency><dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-scala_2.11</artifactId>
<version>${flink.version}</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-streaming-scala_2.11</artifactId>
<version>${flink.version}</version>
</dependency>
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>5.1.27</version>
</dependency><!--Flink的java的依赖-->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-java</artifactId>
<version>${flink.version}</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-streaming-java_2.11</artifactId>
<version>${flink.version}</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-kafka_2.12</artifactId>
<version>1.14.3</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>${hadoop.version}</version>
</dependency>
</dependencies>
</project>
1 批处理api开发(scala语言开发,记得创建一个maven工程之后就添加scala语言)
package com.qf.bigdata
import org.apache.flink.api.scala.{DataSet, ExecutionEnvironment}
import org.apache.flink.api.scala._
import org.apache.flink.core.fs.FileSystem
//批次处理的API单词的计数统计
object Demo01_BatchWCScala {
def main(args: Array[String]): Unit = {
// 创建flink执行入口
val env = ExecutionEnvironment.getExecutionEnvironment
//通过执行对象获取批次的数据
val ds:DataSet[String]=env.readTextFile("data/test.txt")
//处理数据
val rs:DataSet[(String,Int)] = ds.flatMap(_.split(" "))
.map((_,1))
.groupBy(0)
.sum(1)
.print() //默认就是执行了execute}
}
就是在工程的src文件夹同级建一个data文件夹,里面自定义一个文件,写单词

下图就是我的test.txt

变形
val rs:DataSet[(String,Int)] = ds.flatMap(_.split(" "))
.map((_,1))
.groupBy(0)
.sum(1)
//.print() //默认就是执行了execute
//添加并行度
.setParallelism(1) //存在包的问题,就是降低

本文档详细介绍了使用Flink进行批处理和流式处理的API应用,包括Scala和Java两种语言的实现。从批处理API开始,通过读取文本文件进行单词计数,然后转向Java批处理API的相同操作。接着,展示了Scala和Java的流处理编程,从socket数据源读取数据。此外,还涵盖了将MySQL和Kafka作为Flink的数据源,最后讨论了Flink与旧版和新版Kafka API的集成。
最低0.47元/天 解锁文章
1058

被折叠的 条评论
为什么被折叠?



