Yarn配置
Yarn配置说明
需要调整的Yarn参数均与CPU、内存等资源有关,核心配置参数如下
- yarn.nodemanager.resource.memory-mb该参数的含义是,一个NodeManager节点分配给Container使用的内存。该参数的配置,取决于NodeManager所在节点的总内存容量和该节点运行的其他服务的数量。考虑上述因素,此处可将该参数设置为64G,如下:<property>
<name>yarn.nodemanager.resource.memory-mb</name>
<value>65536</value>
</property> - yarn.nodemanager.resource.cpu-vcores该参数的含义是,一个NodeManager节点分配给Container使用的CPU核数。该参数的配置,同样取决于NodeManager所在节点的总CPU核数和该节点运行的其他服务。考虑上述因素,此处可将该参数设置为16。<property>
<name>yarn.nodemanager.resource.cpu-vcores</name>
<value>16</value>
</property> - yarn.scheduler.maximum-allocation-mb该参数的含义是,单个Container能够使用的最大内存。由于Spark的yarn模式下,Driver和Executor都运行在Container中,故该参数不能小于Driver和Executor的内存配置,推荐配置如下:<property>
<name>yarn.scheduler.maximum-allocation-mb</name>
<value>16384</value>
</property> - yarn.scheduler.minimum-allocation-mb该参数的含义是,单个Container能够使用的最小内存,推荐配置如下:<property>
<name>yarn.scheduler.minimum-allocation-mb</name>
<value>512</value>
</property>
Yarn配置实操
- 修改$HADOOP_HOME/etc/hadoop/yarn-site.xml文件
- 修改如下参数<property>
<name>yarn.nodemanager.resource.memory-mb</name>
<value>65536</value>
</property>
<property>
<name>yarn.nodemanager.resource.cpu-vcores</name>
<value>16</value>
</property>
<property>
<name>yarn.scheduler.maximum-allocation-mb</name>
<value>16384</value>
</property>
<property>
<name>yarn.scheduler.minimum-allocation-mb</name>
<value>512</value>
</property> - 分发该配置文件
- 重启Yarn。
Spark配置
Executor配置说明
Executor CPU核数配置
单个Executor的CPU核数,由spark.executor.cores参数决定,建议配置为4-6,具体配置为多少,视具体情况而定,原则是尽量充分利用资源。
此处单个节点共有16个核可供Executor使用,则spark.executor.core配置为4最合适。原因是,若配置为5,则单个节点只能启动3个Executor,会剩余1个核未使用;若配置为6,则只能启动2个Executor,会剩余4个核未使用_大数据培训。
Executor内存配置
Spark在Yarn模式下的Executor内存模型如下图所示:
Executor相关的参数有:
- spark.executor.memory
- spark.executor.memoryOverhead
spark.executor.memory用于指定Executor进程的堆内存大小,这部分内存用于任务的计算和存储;
spark.executor.memoryOverhead用于指定Executor进程的堆外内存,这部分内存用于JVM的额外开销,操作系统开销等。两者的和才算一个Executor进程所需的总内存大小。
默认情况下spark.executor.memoryOverhead的值等于spark.executor.memory*0.1。
以上两个参数的推荐配置思路是,先按照单个NodeManager的核数和单个Executor的核数,计算出每个NodeManager最多能运行多少个Executor。在将NodeManager的总内存平均分配给每个Executor,最后再将单个Executor的内存按照大约10:1的比例分配到spark.executor.memory和spark.executor.memoryOverhead。
根据上述思路,可得到如下关系:
(spark.executor.memory+spark.executor.memoryOverhead)= yarn.nodemanager.resource.memory-mb * (spark.executor.cores/yarn.nodemanager.resource.cpu-vcores)
经计算,此处应做如下配置:
spark.executor.memory 14G
spark.executor.memoryOverhead 2G
Executor个数配置
此处的Executor个数是指分配给一个Spark应用的Executor个数,Executor个数对于Spark应用的执行速度有很大的影响,所以Executor个数的确定十分重要。
一个Spark应用的Executor个数的指定方式有两种,静态分配和动态分配。
- 静态分配可通过spark.executor.instances指定一个Spark应用启动的Executor个数。这种方式需要自行估计每个Spark应用所需的资源,并为每个应用单独配置Executor个数。
- 动态分配动态分配可根据一个Spark应用的工作负载,动态的调整其所占用的资源(Executor个数)。这意味着一个Spark应用程序可以在运行的过程中,需要时,申请更多的资源(启动更多的Executor),不用时,便将其释放。在生产集群中,推荐使用动态分配。动态分配相关参数如下:#启动动态分配
spark.dynamicAllocation.enabled true
#启用Spark shuffle服务
spark.shuffle.service.enabled true
#Executor个数初始值
spark.dynamicAllocation.initialExecutors 1
#Executor个数最小值
spark.dynamicAllocation.minExecutors 1
#Executor个数最大值
spark.dynamicAllocation.maxExecutors 12
#Executor空闲时长,若某Executor空闲时间超过此值,则会被关闭
spark.dynamicAllocation.executorIdleTimeout 60s
#积压任务等待时长,若有Task等待时间超过此值,则申请启动新的Executor
spark.dynamicAllocation.schedulerBacklogTimeout 1s
spark.shuffle.useOldFetchProtocol true
说明:Spark shuffle服务的作用是管理Executor中的各Task的输出文件,主要是shuffle过程map端的输出文件。由于启用资源动态分配后,Spark会在一个应用未结束前,将已经完成任务,处于空闲状态的Executor关闭。Executor关闭后,其输出的文件,也就无法供其他Executor使用了。需要启用Spark shuffle服务,来管理各Executor输出的文件,这样就能关闭空闲的Executor,而不影响后续的计算任务了。
Driver配置说明
Driver主要配置内存即可,相关的参数有spark.driver.memory和spark.driver.memoryOverhead。
spark.driver.memory用于指定Driver进程的堆内存大小
spark.driver.memoryOverhead用于指定Driver进程的堆外内存大小。
默认情况下,两者的关系如下:spark.driver.memoryOverhead=spark.driver.memory*0.1。两者的和才算一个Driver进程所需的总内存大小_大数据视频。
一般情况下,按照如下经验进行调整即可:
假定yarn.nodemanager.resource.memory-mb设置为X,
- 若X>50G,则Driver可设置为12G,
- 若12G<X<50G,则Driver可设置为4G。
- 若1G<X<12G,则Driver可设置为1G。
此处yarn.nodemanager.resource.memory-mb为64G,则Driver的总内存可分配12G,所以上述两个参数可配置为
spark.driver.memory 10G
spark.yarn.driver.memoryOverhead 2G
Spark配置实操
- 修改spark-defaults.conf文件
- 修改$HIVE_HOME/conf/spark-defaults.confspark.master yarn
spark.eventLog.enabled true
spark.eventLog.dir hdfs://myNameService1/spark-history
spark.executor.cores 4
spark.executor.memory 14g
spark.executor.memoryOverhead 2g
spark.driver.memory 10g
spark.driver.memoryOverhead 2g
spark.dynamicAllocation.enabled true
spark.shuffle.service.enabled true
spark.dynamicAllocation.executorIdleTimeout 60s
spark.dynamicAllocation.initialExecutors 1
spark.dynamicAllocation.minExecutors 1
spark.dynamicAllocation.maxExecutors 12
spark.dynamicAllocation.schedulerBacklogTimeout 1s
- 修改$HIVE_HOME/conf/spark-defaults.confspark.master yarn
- 配置Spark shuffle服务Spark Shuffle服务的配置因Cluster Manager(standalone、Mesos、Yarn)的不同而不同。此处以Yarn作为Cluster Manager。
- 拷贝$SPARK_HOME/yarn/spark-3.0.0-yarn-shuffle.jar到$HADOOP_HOME/share/hadoop/yarn/lib
- 分发$HADOOP_HOME/share/hadoop/yarn/lib/yarn/spark-3.0.0-yarn-shuffle.jar
- 修改$HADOOP_HOME/etc/hadoop/yarn-site.xml文件<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle,spark_shuffle</value>
</property>
<property>
<name>yarn.nodemanager.aux-services.spark_shuffle.class</name>
<value>org.apache.spark.network.yarn.YarnShuffleService</value>
</property> - 分发$HADOOP_HOME/etc/hadoop/yarn-site.xml文件
- 重启Yarn