LeGO-LOAM可以看成是LOAM的升级版,在LOAM的基础上做了不少的改进,大概有以下几点:
- 特征提取
- 增加了地面分割和点云聚类
- 在地面点上提取平面点,在非地面点上提取角点
- lidarOdometry
- 角点只在当前点的前一帧对应聚类中寻找,面点只在当前点对应的前一帧地面点中找,减少了候选点的个数
- 使用了两次L-M优化,先匹配面点获得[t_z, θ_roll, θ_pitch],再利用获得的上述变量作为约束加上角点的匹配获得剩余的变量[t_x, t_y, θ_yaw]
- lidarMapping
- 更改了Map的存储方式,利用特征点集合的方式存储地图
- 作scan to map的匹配时,不再对整个地图作匹配,选取一个surround map作为 map来与当前帧匹配,LOAM也有sourround map不过 LeGO得益于Map的存储方式,可以更快速的得到surround map
- 增加了位姿图,并利用iSAM2进行回环检测(论文中只有再KITTI数据上实验才使用了回环检测)
差别对比
框架
LOAM


特征点

LOAM(上) && LeGO-LOAM(下)

500

被折叠的 条评论
为什么被折叠?



