1.傅里叶变换
对图片进行频域上的处理

opencv中主要就是cv2.dft()和cv2.idft(),输入图像需要先转换成np.float32 格式。
得到的结果中频率为0的部分会在左上角,通常要转换到中心位置,可以通过shift变换来实现。
cv2.dft()返回的结果是双通道的(实部,虚部),通常还需要转换成图像格式才能展示(0,255)。
import numpy as np
import cv2
from matplotlib import pyplot as plt
img = cv2.imread('lena.jpg',0)
img_float32 = np.float32(img)
dft = cv2.dft(img_float32, flags = cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft) #将频率为0的移到中心
# 因为傅里叶变换返回的是实部和虚部,故要转换为矩阵的形式用图像展示出来
#magnitude函数的作用是计算二维矢量的幅值,这里就是计算虚数的幅值
magnitude_spectrum = 20*np.log(cv2.magnitude(dft_shift[:,:,0],dft_shift[:,:,1]))
plt.subplot(121),plt.imshow(img, cmap = 'gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(magnitude_spectrum, cmap = 'gray')
plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([])
plt.show()
左图为原图,右图为原图在频域上频率分布的情况,中间的低频,随着向四周扩散频率逐渐升高

2.用傅里叶进行滤波
滤波的方式就是通过傅里叶变换求得图片在频域上的分布,利用掩膜选取所需要的频率,再进行逆变换,从而获得滤波后的图像,这种滤波方式更加简便和精确
低通滤波举例:
import numpy as np
import cv2
from matplotlib import pyplot as plt
img = cv2.imread('lena.jpg',0)
img_float32 = np.float32(img)
dft = cv2.dft(img_float32, flags = cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)
#以上的代码都和前面相同
rows, cols = img.shape
crow, ccol = int(rows/2) , int(cols/2) #取图片中心位置,制作掩膜,将高频的区域置0覆盖掉,保留低频信号
# 低通滤波,通过创建掩膜来提取低频信号
mask = np.zeros((rows, cols, 2), np.uint8)
mask[crow-30:crow+30, ccol-30:ccol+30] = 1
# IDFT 傅里叶逆变换
fshift = dft_shift*mask #相当于与操作
f_ishift = np.fft.ifftshift(fshift) #前面将频率为0移到了中心,现在要先移回左上角再做逆变换
img_back = cv2.idft(f_ishift)
img_back = cv2.magnitude(img_back[:,:,0],img_back[:,:,1]) #和上面一样,虚数求幅值转为矩阵,继而用图像表示
plt.subplot(121),plt.imshow(img, cmap = 'gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(img_back, cmap = 'gray')
plt.title('Result'), plt.xticks([]), plt.yticks([])
plt.show()
效果如下

同理,高通滤波也一样,只是掩膜不同
img = cv2.imread('lena.jpg',0)
img_float32 = np.float32(img)
dft = cv2.dft(img_float32, flags = cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)
rows, cols = img.shape
crow, ccol = int(rows/2) , int(cols/2) # 中心位置
# 高通滤波
mask = np.ones((rows, cols, 2), np.uint8)
mask[crow-30:crow+30, ccol-30:ccol+30] = 0 #这里将中间低频的部分置0覆盖掉,保留高频的部分
# IDFT
fshift = dft_shift*mask
f_ishift = np.fft.ifftshift(fshift)
img_back = cv2.idft(f_ishift)
img_back = cv2.magnitude(img_back[:,:,0],img_back[:,:,1])
plt.subplot(121),plt.imshow(img, cmap = 'gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(img_back, cmap = 'gray')
plt.title('Result'), plt.xticks([]), plt.yticks([])
plt.show()


244

被折叠的 条评论
为什么被折叠?



