【线性代数】5.1 正交

正交向量

  • 向量在标准正交基中的坐标
    a = λ 1 e 1 + λ 2 e 2 + . . . + λ r e r \bold a=\lambda_1\bold e_1+\lambda_2\bold e_2+...+\lambda_r\bold e_r a=λ1e1+λ2e2+...+λrer
    λ i = [ a , e i ] \lambda_i=[\bold a,\bold e_i] λi=[a,ei]
  • 把基 a 1 , a 2 , . . . a r \bold a_1,\bold a_2,...\bold a_r a1,a2,...ar标准正交化
  1. 施密特正交化
    b 1 = a 1 , \bold b_1=\bold a_1, b1=a1,
    b 2 = a 2 − [ b 1 , a 2 ] [ b 1 , b 1 ] b 1 , \bold b_2=\bold a_2-\dfrac{[\bold b_1,\bold a_2]}{[\bold b_1,\bold b_1]}\bold b_1, b2=a2[b1,b1][b1,a2]b1,
    说明: [ b 1 , a 2 ] [ b 1 , b 1 ] b 1 \dfrac{[\bold b_1,\bold a_2]}{[\bold b_1,\bold b_1]}\bold b_1 [b1,b1][b1,a2]b1 a 2 \bold a_2 a2 b 1 \bold b_1 b1方向上的分量。
    [ b 1 , a 2 ] [ b 1 , b 1 ] b 1 = [ a 2 , b 1 ∥ b 1 ∥ ] b 1 ∥ b 1 ∥ \begin{aligned} \dfrac{[\bold b_1,\bold a_2]}{[\bold b_1,\bold b_1]}\bold b_1 &=[\bold a_2,\dfrac{\bold b_1}{\|\bold b_1\|}]\dfrac{\bold b_1}{\|\bold b_1\|} \end{aligned} [b1,b1][b1,a2]b1=[a2,b1b1]b1b1
    . . . . . . . . . . . . ............ ............
    b r = a r − [ b 1 , a r ] [ b 1 , b 1 ] b 1 − [ b 2 , a r ] [ b 2 , b 2 ] b 1 − . . . − [ b r − 1 , a r ] [ b r − 1 , b r − 1 ] b r − 1 . \bold b_r=\bold a_r-\dfrac{[\bold b_1,\bold a_r]}{[\bold b_1,\bold b_1]}\bold b_1-\dfrac{[\bold b_2,\bold a_r]}{[\bold b_2,\bold b_2]}\bold b_1-...-\dfrac{[\bold b_{r-1},\bold a_r]}{[\bold b_{r-1},\bold b_{r-1}]}\bold b_{r-1}. br=ar[b1,b1][b1,ar]b1[b2,b2][b2,ar]b1...[br1,br1][br1,ar]br1.
    正交验证:
    [ b 1 , b 2 ] = [ a 1 , a 2 − [ b 1 , a 2 ] [ b 1 , b 1 ] b 1 ] = [ a 1 , a 2 ] − [ a 1 , [ b 1 , a 2 ] [ b 1 , b 1 ] b 1 ] = [ a 1 , a 2 ] − [ b 1 , a 2 ] [ b 1 , b 1 ] [ a 1 , b 1 ] = [ a 1 , a 2 ] − a 1 T b 1 b 1 T a 2 [ b 1 , b 1 ] = [ a 1 , a 2 ] − a 1 T [ b 1 , b 1 ] a 2 [ b 1 , b 1 ] = 0 \begin{aligned} [\bold b_1,\bold b_2] &=[\bold a_1,\bold a_2-\dfrac{[\bold b_1,\bold a_2]}{[\bold b_1,\bold b_1]}\bold b_1]\\ &=[\bold a_1,\bold a_2]-[\bold a_1,\dfrac{[\bold b_1,\bold a_2]}{[\bold b_1,\bold b_1]}\bold b_1]\\ &=[\bold a_1,\bold a_2]-\dfrac{[\bold b_1,\bold a_2]}{[\bold b_1,\bold b_1]}[\bold a_1,\bold b_1]\\ &=[\bold a_1,\bold a_2]-\dfrac{\bold a_1^T\bold b_1\bold b_1^T\bold a_2}{[\bold b_1,\bold b_1]}\\ &=[\bold a_1,\bold a_2]-\dfrac{\bold a_1^T[\bold b_1,\bold b_1]\bold a_2}{[\bold b_1,\bold b_1]}\\ &=0 \end{aligned} [b1,b2]=[a1,a2[b1,b1][b1,a2]b1]=[a1,a2][a1,[b1,b1][b1,a2]b1]=[a1,a2][b1,b1][b1,a2][a1,b1]=[a1,a2][b1,b1]a1Tb1b1Ta2=[a1,a2][b1,b1]a1T[b1,b1]a2=0

  2. 单位化
    e 1 = 1 ∥ b 1 ∥ b 1 , e 2 = 1 ∥ b 2 ∥ b 2 , . . . , e r = 1 ∥ b r ∥ b r \bold e_1=\dfrac{1}{\|\bold b_1\|}\bold b_1,\bold e_2=\dfrac{1}{\|\bold b_2\|}\bold b_2,...,\bold e_r=\dfrac{1}{\|\bold b_r\|}\bold b_r e1=b11b1,e2=b21b2,...,er=br1br.

正交矩阵

  • 定义:如果 n n n阶矩阵 A \bold A A满足
    A T A = E ( A − 1 = A T ) \bold A^T\bold A=\bold E(\bold A^{-1}=\bold A^T) ATA=E(A1=AT)
    那么称 A \bold A A为正交矩阵。
  • 方阵 A \bold A A为正交矩阵的充分必要条件是 A \bold A A的列(行)向量都是单位向量,且两两正交。
  • 性质:
  1. A \bold A A为正交矩阵,则 A − 1 = A T \bold A^{-1}=\bold A^T A1=AT也是正交矩阵,且 ∣ A ∣ = 1 或 − 1 |\bold A|=1或-1 A=11
  2. A \bold A A B \bold B B都是正交矩阵,则 A B \bold A\bold B AB也是正交矩阵。

正交变换

  • 定义:若 P \bold P P为正交矩阵,则线性变换 y = P x \bold y=\bold P\bold x y=Px称为正交变换。
  • 优点: ∥ y ∥ = ∥ x ∥ \|\bold y\|=\|\bold x\| y=x,即正交变换线段长度不变。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值