L3-005 垃圾箱分布【测试点4的小问题】

本文介绍了一道编程题目,要求根据居民点和垃圾箱候选地点之间的距离,选择一个最佳的垃圾箱位置。该位置应使所有居民点到它的最短距离最大化且不超过给定阈值。通过Dijkstra算法进行求解,并处理了保留小数点后一位的精度问题。文章提到了在处理测试数据时遇到的小数精度误差,但最终通过标准格式化输出解决了问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:L3-005 垃圾箱分布
内容:

大家倒垃圾的时候,都希望垃圾箱距离自己比较近,但是谁都不愿意守着垃圾箱住。所以垃圾箱的位置必须选在到所有居民点的最短距离最长的地方,同时还要保证每个居民点都在距离它一个不太远的范围内。

现给定一个居民区的地图,以及若干垃圾箱的候选地点,请你推荐最合适的地点。
如果解不唯一,则输出到所有居民点的平均距离最短的那个解。
如果这样的解还是不唯一,则输出编号最小的地点。

输入格式:

输入第一行给出4个正整数:N(≤10^​3​​ )是居民点的个数;M(≤10)是垃圾箱候选地点的个数;K(≤10^​4​​
)是居民点和垃圾箱候选地点之间的道路的条数; D​ist 是居民点与垃圾箱之间不能超过的最大距离。
所有的居民点从1到N编号,所有的垃圾箱候选地点从G1GM编号。 随后K行,每行按下列格式描述一条道路:

P1 P2 Dist

其中P1P2是道路两端点的编号,端点可以是居民点,也可以是垃圾箱候选点。Dist是道路的长度,是一个正整数。

输出格式:

首先在第一行输出最佳候选地点的编号。 然后在第二行输出该地点到所有居民点的最小距离和平均距离。 数字间以空格分隔,保留小数点后1位。
如果解不存在,则输出No Solution。

输入样例1:

4 3 11 5
1 2 2
1 4 2
1 G1 4
1 G2 3
2 3 2
2 G2 1
3 4 2
3 G3 2
4 G1 3
G2 G1 1
G3 G2 2

输出样例1:

G1
2.0 3.3

输入样例2:

2 1 2 10
1 G1 9
2 G1 20

输出样例2:

No Solution

分析:
这道题对每个垃圾点进行Dijkstra即可,然后找到符合以下条件的垃圾点:

  1. 居民点与垃圾箱之间的最短距离不超过Dist
  2. 垃圾箱到居民点的最短距离最长
  3. 若符合2的不唯一,则选择平均距离最短的
  4. 若符合3的不唯一,则选择编号最小的

这些就按部就班的做就好了,没有什么坑点。
重点来了,也就是写此篇文章的原因,测试点4的问题。

题目要求保留1位小数,在测试样例的时候用printf竟是错误了,结果成了3.2,便开始百度谷歌360浮点数四舍五入的方法了,查过之后样例是过了,但是测试点4却没有过!但是只用printf.1lf格式化输出提交了却AC了,那就是样例有问题,或者测试点4的数据有问题,所以大家不用过于纠结这里,按照以前的做法做就行了。

#include<iostream>
#include<vector>
#include<queue>
#include<algorithm>
#include<utility>
using namespace std;
int n, m, k, mp[1015][1015], inf = 1e9;
typedef pair<int,int> P;
vector<int> vmp[1025], ans, ab;
int dis[15][1025];
double md;
void getedg(){
    string s1,s2;
    int a,b,w;
    cin>>s1>>s2>>w;
    if(s1[0]=='G'){
        a = stoi(s1.substr(1))+n;
//         cout<<a<<" ";
    } else a = stoi(s1);
    if(s2[0]=='G'){
        b = stoi(s2.substr(1))+n;
//         cout<<b<<" ";
    } else b = stoi(s2);
    mp[a][b] = mp[b][a] = w;
    vmp[a].push_back(b);
    vmp[b].push_back(a);
}
void dj_hep(int vt){
    for(int i=1;i<=n+m;i++) dis[vt][i]=inf;
    dis[vt][vt+n]=0;
    priority_queue<P,vector<P>, greater<P> >q;
    q.push(P(0, vt+n));
    while(!q.empty()){
        P p = q.top(); q.pop();
        int v = p.second;
        if(dis[vt][v]<p.first) continue;
        for(auto i:vmp[v]){
            if(dis[vt][i]>dis[vt][v]+mp[i][v]){
                dis[vt][i]=dis[vt][v]+mp[i][v];
                q.push(P(dis[vt][i], i));
            }
        }
    }
}
int main(){
    cin>>n>>m>>k>>md;
    for(int i=0;i<k;i++) getedg();
    int minn = inf;
    int minmaxn = -1;
    for(int i=1;i<=m;i++) {
        dj_hep(i);
        int flag=1;
        dis[i][n+11]=0;
        dis[i][n+12]=inf;
        for(int j=1;j<=n;j++) {
            if(dis[i][j]>md||dis[i][j]==inf){ flag=0;break;}
            dis[i][n+11]+=dis[i][j];
            dis[i][n+12] = min(dis[i][j], dis[i][n+12]);
        }
         if(flag) {ans.push_back(i); minmaxn = max(minmaxn,dis[i][n+12]);}
    }
    if(ans.size()==0) {cout<<"No Solution"; return 0;}
    for(auto i:ans){
        if(dis[i][n+12]==minmaxn){
            ab.push_back(i);
            minn = min(minn, dis[i][n+11]);
        }
    }
    for(auto i:ab) {
        if(dis[i][n+11]==minn){
            cout<<"G"<<i<<endl;
            float vv = dis[i][n+11]/(n*1.0);
            printf("%.1lf %.1f", dis[i][n+12]*1.0,vv);
            return 0;
        }
    }
    return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值