一、过拟合
下面三张图对应三个模型:
- 第一个模型属于欠拟合(underfit或high bias),模型的预测值与实际值有很大偏差
- 第二个模型属于正正好(generalization),可以推广到其他数据
- 第三个模型属于过拟合(overfit或者high variance),模型的预测值与实际值的偏差几乎没有,但是很难推广到其他数据,当出现新的数据时,模型的预测值明显不符合预期。如果有两批不同的训练集数据,使用这种模型训练,算出的w1、w2参数将会截然不同

二、如何避免过拟合
1、收集更多训练数据集
训练集数据量越大,模型越能避免过拟合
2、选择合适的特征集
选取合适的特征子集,比如有20种特征,只选取适合的其中几种特征。不过有风险丢失掉有用的特征,导致模型不准确
3、正则化(Regularization)
当拥有很多特征,不知道哪些特征是重要特征时,使用正则化缩小所有的参数,不使用极端参数,使拟合更加光滑。
举个例子,下图是过拟合模型

通过把上述模型的w2、w3、w4参数减小,减小参数值的影响,就可以得到正正好的模型。


三、正则化
1、正则化公式
在代价函数中引入正则化,,n为特征个数,
是正则化参数,
>0
平方误差代价函数引入正则化后,表达式:
逻辑回归代价函数引入正则化后,表达式:
的选择:如果
选择特别小,那么正则化将起不到作用;如果
特别大,那么需要减小w参数,才能减小代价函数,就会导致欠拟合
2、梯度下降
以平方误差代价函数为例, 代入梯度下降得到:
学习来源:B站吴恩达,P37-P41,10.1-10.5节
本文详细探讨了过拟合现象在模型中的表现,介绍了如何通过增加训练数据、选择适当特征和应用正则化来防止过拟合。通过正则化公式和梯度下降在逻辑回归中的应用实例,展示了如何在代价函数中平衡模型复杂度和泛化能力。

被折叠的 条评论
为什么被折叠?



