一、神经网络 Neural Network
神经网络,也叫深度学习Deep Learning Algorithms
神经网络的概念可类比成人的大脑,在大脑中,第一个神经元接受来自其他神经元的电脉冲,然后这个神经元输出电脉冲传递给第二个神经元。

在神经网络中,一组输入传递给神经元,经过神经元的计算,神经元输出一组数据outputs

为什么近年来才兴起神经网络?近年来的数据量呈爆炸式增长。
下图是不同算法随着数据量上升的算法性能变化,传统AI(逻辑回归、线性回归)随着数据量上涨,算法的性能和准确性变化不大,而建立一个非常大的神经网络时,算法性能随着数据量上涨而明显提升。

二、需求预测
例子:通过神经网络,预测T恤是否会畅销
第一层:影响T恤畅销度的因素可能是:价格、运输成本、市场营销、材质
第二层:
· 价格会影响顾客的承受能力和顾客感知到的产品质量
· 运输成本会影响到到顾客的承受能力
· 市场营销会影响到顾客的购买欲望
· 材质会影响到顾客感知到的产品质量
第三层:承受能力、购买欲望、感知到的质量共同影响到T恤的销量
以上用神经网络的方式表达,呈现为下图:

三、神经网络的一些概念
概念——layer:
一组由相同或相似的特征作为输入,又一起输出一组结果的神经元,被称为一层(layer)神经元。例子中,价格、运输成本、市场营销、材质是输入层,承受能力、购买欲望、感知到的质量是一层神经元,这层可以叫做隐藏层,销量是输出层。
概念——activations:
神经元向下游神经元发送的电脉冲被称为激活activations。承受能力、购买欲望、感知到的质量就是这一层神经元的激活。
神经网络的总结:
输入一组特征向量,
是第一层隐藏层的输入,第一层隐藏层输出激活值
,激活值
是第二层隐藏层的输入,第二层隐藏层输出第二组激活值
,第二组激活值
是输出层的输入。

学习来源:B站吴恩达机器学习,P42-P45

被折叠的 条评论
为什么被折叠?



