机器学习(十一):神经网络的层和前向传播

一、层的计算

下图中,输入层把\vec{x}传入第一层(蓝框),第一层的计算是:

第一个神经元:a_{1}=g(\vec{w}_{1}\cdot \vec{x}+b_{1})

第二个神经元: a_{2}=g(\vec{w}_{2}\cdot \vec{x}+b_{2})

第三个神经元:a_{3}=g(\vec{w}_{3}\cdot \vec{x}+b_{3})

然后输出激活值:\vec{a}^{[1]}=\begin{bmatrix} a_{1} \\ a_{2} \\ a_{3} \end{bmatrix}

第一层的激活值\vec{a}^{[1]}传入第二层(蓝框),第二层的计算是:

第一个神经元:a_{1}=g(\vec{w}_{1}\cdot \vec{a}^{[1]}+b_{1}),然后输出激活值a^{[2]}=a_{1}

最后,根据激活值a^{[2]}判断预测值\hat{y}

二、层和激活值的表示

下图的神经网络中,输入层\vec{x}是第0层,中间第1、2、3层也被称为隐藏层,第4层被称为输出层。每层的激活值表示成\vec{a}^{[l]}\vec{x}也可写为\vec{a}^{[0]}。激活值的计算:\vec{a}^{[l]}=g(\vec{w}_{j}^{[l]}\cdot \vec{a}^{[l-1]}+b_{j}^{[l]}),其中,l为层数,g为激活函数。

三、前向传播

前向传播算法(Forward Propagation):从左到右的前进方向上进行计算。选择神经网络架构时的一个典型选择是,隐藏神经元的数量随着接近输出层而减少。

学习来源:B站吴恩达机器学习,P46-P48

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值