一、层的计算
下图中,输入层把传入第一层(蓝框),第一层的计算是:
第一个神经元:
第二个神经元:
第三个神经元:
然后输出激活值:

第一层的激活值传入第二层(蓝框),第二层的计算是:
第一个神经元:,然后输出激活值

最后,根据激活值判断预测值

二、层和激活值的表示
下图的神经网络中,输入层是第0层,中间第1、2、3层也被称为隐藏层,第4层被称为输出层。每层的激活值表示成
,
也可写为
。激活值的计算:
,其中,l为层数,g为激活函数。

三、前向传播
前向传播算法(Forward Propagation):从左到右的前进方向上进行计算。选择神经网络架构时的一个典型选择是,隐藏神经元的数量随着接近输出层而减少。
学习来源:B站吴恩达机器学习,P46-P48

被折叠的 条评论
为什么被折叠?



