机器学习(十八):Adam算法和卷积层

一、Adam算法

在梯度下降公式:

w = w - \alpha \frac{\partial }{\partial w}J(w,b)

b = b - \alpha \frac{\partial }{\partial b}J(w,b)

如果选择的学习率太小,梯度下降速度会很慢,如果选择的学习率太大,梯度下降会来回摆动。

目前更常用的是Adam算法,可以自适应地调整学习率的大小。

Adam算法的全称:Adaptive Moment estimation

如果保持在大致相同的方向移动,Adam算法会提高学习率,提高梯度下降的速率。

如果保持来回摆动,Adam算法会降低学习率。

二、Adam算法代码实现

设置model.compile(optimizer=tf.keras.optimizers.Adam(learning rate=1e-3),使用Adam,需要设置初始学习率learning rate。

三、卷积层和卷积神经网络

3.1 什么叫密集层

密集层:每层隐藏层的输出是通过前一层隐藏层的所有激活值计算出来的。

3.2 什么叫卷积层

卷积层:每层隐藏层的输出是通过前一层隐藏层的部分激活值计算出来的。

使用卷积层的神经网络叫卷积神经网络

下面的案例中,输入是心电图的幅值\vec{x}

  • 第一层隐藏层使用卷积层类型,第一个神经元的输入是x1到x20,第二个神经元的输入是x11到x30;
  • 第二层隐藏层使用卷积层类型,第一个神经元的输入是a_{1}^{[1]}a_{5}^{[1]},第二个神经元的输入是a_{3}^{[1]}a_{7}^{[1]}
  • 第三次输出层用的是Sigmoid,输出得心脏病的概率。

3.3 卷积层的优点

1、计算速度更快

2、需要更少的训练数据,并且减少过拟合的发生

学习来源:吴恩达机器学习,10.1-10.2节

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值