一、Adam算法
在梯度下降公式:
如果选择的学习率太小,梯度下降速度会很慢,如果选择的学习率太大,梯度下降会来回摆动。
目前更常用的是Adam算法,可以自适应地调整学习率的大小。
Adam算法的全称:Adaptive Moment estimation
如果保持在大致相同的方向移动,Adam算法会提高学习率,提高梯度下降的速率。

如果保持来回摆动,Adam算法会降低学习率。

二、Adam算法代码实现
设置model.compile(optimizer=tf.keras.optimizers.Adam(learning rate=1e-3),使用Adam,需要设置初始学习率learning rate。

三、卷积层和卷积神经网络
3.1 什么叫密集层
密集层:每层隐藏层的输出是通过前一层隐藏层的所有激活值计算出来的。
![]()

3.2 什么叫卷积层
卷积层:每层隐藏层的输出是通过前一层隐藏层的部分激活值计算出来的。
使用卷积层的神经网络叫卷积神经网络。
下面的案例中,输入是心电图的幅值:
- 第一层隐藏层使用卷积层类型,第一个神经元的输入是x1到x20,第二个神经元的输入是x11到x30;
- 第二层隐藏层使用卷积层类型,第一个神经元的输入是
到
,第二个神经元的输入是
到
;
- 第三次输出层用的是Sigmoid,输出得心脏病的概率。

3.3 卷积层的优点
1、计算速度更快
2、需要更少的训练数据,并且减少过拟合的发生
学习来源:吴恩达机器学习,10.1-10.2节

被折叠的 条评论
为什么被折叠?



