自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(82)
  • 收藏
  • 关注

原创 计算机组成原理(第三版)唐朔飞-第三章系统总线-课后习题

计算机组成原理(第三版)唐朔飞-第三章系统总线-课后习题

2022-10-15 18:46:22 50223 12

原创 计算机组成原理(第三版)唐朔飞-第四章存储器-课后习题

计算机组成原理(第三版)唐朔飞-第四章存储器-课后习题

2022-10-14 16:45:55 132689 39

原创 计算机组成原理(第三版)唐朔飞-第九章控制单元的功能-课后习题

计算机组成原理(第三版)唐朔飞-第九章控制单元的功能-课后习题

2022-10-13 22:53:20 33459 12

原创 计算机组成原理(第三版)唐朔飞-第十章控制单元的设计-课后习题

计算机组成原理(第三版)唐朔飞-第十章控制单元的设计-课后习题

2022-10-13 18:15:21 23041 10

原创 计算机组成原理(第三版)唐朔飞-第八章CPU的结构和功能-课后习题

8.1CPU有哪些功能?画出其结构框图并简要说明每个部件的作用。

2022-10-11 19:23:04 43796 4

原创 计算机组成原理(第三版)唐朔飞-第一章第二章-课后习题

计算机组成原理

2022-10-10 22:45:10 55991 26

原创 计算机组成原理(第三版)唐朔飞-第六章计算机的运算方法-课后习题(17-32)

计算机组成原理(第三版)唐朔飞-第六章计算机的运算方法-课后习题(17-32)

2022-10-08 16:07:36 96636 30

原创 计算机组成原理(第三版)唐朔飞-第六章计算机的运算方法-课后习题(1-16)

计算机组成原理(第三版)唐朔飞-第六章计算机的运算方法-课后习题(1-16)

2022-10-07 13:03:25 64749 25

原创 计算机组成原理(第三版)唐朔飞-第七章指令系统-课后习题

机器字长是指CPU一次能处理数据的位数通常与CPU的寄存器位数有关。指令字长是指机器指令中二进制代码的总位数。存储字长是指存储单元中存放二进制代码的总位数。三者可以相等也可以不等视不同机器而定。答:OP(4位)A1(6位)A_1(6位)A1​(6位)A2(6位)A_2(6位)A2​(6位)设二地址指令格式为该指令系统的基本格式,4位操作码共有16种编码,其中13种用来定义二地址指令,还剩3种可用作扩展标志。一地址指令条数=3∗26=192。

2022-10-05 23:54:38 57728 22

原创 SQL学习笔记6-决胜秋招

数据倾斜就是:由于数据分布不均匀,造成数据大量的集中到一点,造成数据热点,常见现象是:任务进度长时间维持在 99%或者 100%的附近,查看任务监控页面,发现只有少量 reduce 子任务未完成,因为其处理的数据量和其他的 reduce 差异过大。使用 map join 解决小表(记录数少)关联大表的数据倾斜问题,这个方法使用的频率非常 高,但如果小表很大,大到 map join 会出现 bug 或异常,这时就需要特别的处理。每位员工都有一个Id,并且还有一个对应主管的Id(ManagerId)。

2022-09-26 19:11:41 665

原创 SQL学习笔记5-SQL高级处理

SQL高级处理

2022-09-24 20:43:49 171

原创 SQL学习笔记4-集合运算

集合在数学领域表示“各种各样的事物的总和”, 在数据库领域表示记录的集合. 具体来说,表、视图和查询的执行结果都是记录的集合, 其中的元素为表或者查询结果中的每一行。在标准 SQL 中, 分别对检索结果使用UNION,INTERSECT,EXCEPT来将检索结果进行并,交和差运算, 像UNION,INTERSECT,EXCEPT这种用来进行集合运算的运算符称为集合运算符。以下的文氏图展示了几种集合的基本运算。[图片来源于网络]

2022-09-21 10:49:38 746

原创 计算机组成原理学习笔记-加法器

串行加法器→串行进位的并行加法器→组内并行、组间串行进位的加法器→组内并行、组间并行进位的加法器

2022-09-21 08:40:38 3487

原创 SQL学习笔记3-复杂一点的查询

视图是一个虚拟的表,不同于直接操作数据表,视图是依据SELECT语句来创建的,所以操作视图时会根据创建视图的SELECT语句生成一张虚拟表,然后在这张虚拟表上做SQL操作。子查询指一个查询语句嵌套在另一个查询语句内部的查询,这个特性从 MySQL 4.1 开始引入,在 SELECT 子句中先计算子查询,子查询结果作为外层另一个查询的过滤条件,查询可以基于一个表或者多个表。谓词就是返回值为真值的函数。包括。LIKEBETWEENINEXISTSCASE 表达式是函数的一种。

2022-09-18 11:35:28 548

原创 SQL学习笔记2-基础查询与排序

sql基础查询语句

2022-09-15 11:03:46 281

原创 SQL学习笔记1-初识SQL

初识SQL

2022-09-13 23:23:44 197

原创 不使用循环实现:输入为正整数n,返回的数组构造方式如下:第1行填入1个1,第2行在上一行填入位置的下一列连续填入2个2,第3行在第二行最后一个填入位置的下一列连续填入3个3,...

设计一个生成二维NumPy数组的函数get_res(),其输入为正整数n,返回的数组构造方式如下:第1行填入1个1,第2行在上一行填入位置的下一列连续填入2个2,第3行在第二行最后一个填入位置的下一列连续填入3个3,…,第n行在第n-1行最后一个填入位置的下一列连续填入n个n。

2022-09-11 11:56:54 344

原创 python遇到问题

目录在jupyter notebook 上实践pytorch项目遇到的问题,遇到内核崩溃(挂掉了)。在jupyter notebook 上实践pytorch项目遇到的问题,遇到内核崩溃(挂掉了)。import osos.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"

2022-08-23 13:53:11 979

原创 MySQL学习笔记0-MySQL的卸载与安装以及连接

MySQL的卸载与安装以及连接

2022-07-21 09:30:15 170

原创 粤嵌GEC6818-学习笔记2-屏幕相关及音频播放

GEC6818屏幕相关及音乐播放。

2022-07-16 15:34:40 10372 1

原创 粤嵌GEC6818-学习笔记1-基础篇

如何设置共享文件夹? Linux有哪些常用指令? 如何进行交叉开发? 如何查看C语言库函数的使用说明? 如何使用C语言进行文件操作?

2022-06-25 00:31:33 15055 1

原创 数据结构-学习笔记

数据结构

2022-04-28 17:02:29 1256 1

原创 C++初级算法-学习笔记

c++初级算法

2022-04-24 12:19:56 1759

原创 C++语法基础-学习笔记

目录编程入门变量计算机的内存变量的命名规则变量的初始化变量的输出常量顺序结构程序设计数据类型数值整数类型字符整数类型浮点类型算术运算符与表达式基本算术与赋值运算符自增自减运算符位运算符与表达式循环结构程序设计for循环多重循环数组一维数组数组的声明数组元素的访问数组的初始化数组的输入输出多维数组多维数组的声明多维数组访问元素多维数组的初始化多维数组的输入输出字符串字符数组string类型函数与结构体编程入门变量计算机的内存变量指的是会随着程序运算而改变的量。Tips: 比如用户在售卖机购买的可乐数

2022-04-16 02:01:59 2796

原创 卷积神经网络CNN

目录为什么选择卷积神经网络卷积神经网络的基本架构卷积层convolutional layer卷积convolution特征提取填充padding步幅stride卷积神经网络卷积卷积层的作用池化层pooling layers全连接层fully connected layer卷积层VS全连接层卷积神经网络模型典型的卷积神经网络模型LeNet-5AlexNet分组卷积应用Deep DreamDeep StylePlaying Go语音文本分类学习参考为什么选择卷积神经网络\qquad卷积神经网络(Convol

2022-01-22 20:14:04 1026

原创 监督学习与无监督学习的区别

目录机器学习与深度学习监督学习与无监督学习机器学习与深度学习机器学习可以被定义为从数据中总结经验,从数据中找出某种规律或者模型,并利用这些经验、规律或者模型来解决实际问题。机器学习算法主要包括决策树、聚类、贝叶斯分类、支持向量机、随机森林等。按照学习方法的不同进行划分,机器学习算法可以分为监督学习、无监督学习、半监督学习、集成学习、深度学习和强化学习。深度学习是机器学习的一个分支,是一种实现机器学习的技术。深度学习本来并不是一种独立的学习方法,但由于近几年该技术发展迅猛,一些特有的学习手段和模型相继

2022-01-10 18:38:19 632

原创 为什么需要对数值类型的特征做归一化?

为什么需要对数值类型的特征做归一化?对数值类型的特征做归一化可以将所有的特征都统一到一个大致相同的数值区间内。最常用的方法主要有以下两种。线性函数归一化(Min-Max Scaling)。它对原始数据进行线性变换,使得结果映射到[0,1]的范围,实现对原始数据的等比缩放。归一化公式如下Xnorm=X−XminXmax−Xmin X_{norm}=\frac{X-X_{min}}{X_{max}-X_{min}} Xnorm​=Xmax​−Xmin​X−Xmin​​其中XXX为原始数据,Xmin、X

2021-10-14 22:05:02 301

原创 pytorch基础

文章目录pytorch基础下载安装:张量tensor创建tensortensor和numpy array之间的相互转换扩展&压缩tensor的维度:squeeze索引操作:(类似于numpy)view操作可以改变矩阵维度广播机制scalar:0维张量/标量 标量是一个数字vector:1维张量/向量matrix:2维张量3-dimensional tensor:3维张量自动求导autograd雅可比矩阵pytorch基础下载安装:https://pytorch.org/get-started/

2021-10-13 12:53:00 384

原创 在anaconda使用虚拟环境安装多个版本的pytorch

文章目录打开Anaconda Prompt(anaconda3)创建虚拟环境查看环境激活环境安装所需要的pytorch版本打开jupter notebook删除虚拟环境安装多个版本的pytorch打开Anaconda Prompt(anaconda3)点击键盘上的win键,找到Anaconda Prompt(anaconda3),单击打开可以看到此时是base环境创建虚拟环境在窗口输入conda create -n env_name python=X.X创建python版本为X.X,名字为en

2021-10-03 01:06:47 6845 2

原创 天池工业蒸汽量预测

文章目录蒸汽量预测解题思路蒸汽量预测背景介绍火力发电的基本原理是:燃料在燃烧时加热水生成蒸汽,蒸汽压力推动汽轮机旋转,然后汽轮机带动发电机旋转,产生电能。在这一系列的能量转化中,影响发电效率的核心是锅炉的燃烧效率,即燃料燃烧加热水产生高温高压蒸汽。锅炉的燃烧效率的影响因素很多,包括锅炉的可调参数,如燃烧给量,一二次风,引风,返料风,给水水量;以及锅炉的工况,比如锅炉床温、床压,炉膛温度、压力,过热器的温度等。我们如何使用以上的信息,根据锅炉的工况,预测产生的蒸汽量,来为我国的工业届的产量预测贡献自己

2021-07-29 13:41:01 562

原创 Blending-Stacking

Blending集成学习方式:(1) 将数据划分为训练集和测试集(test_set),其中训练集需要再次划分为训练集(train_set)和验证集(val_set);(2) 创建第一层的多个模型,这些模型可以使同质的也可以是异质的;(3) 使用train_set训练步骤2中的多个模型,然后用训练好的模型预测val_set和test_set得到val_predict, test_predict1;(4) 创建第二层的模型,使用val_predict作为训练集训练第二层的模型;(5) 使用第二层训练好

2021-07-28 21:26:25 102

原创 Boosting

文章目录Adaboost的基本思路GBDT的基本思路AdaBoost与GBDTBoosting与Bagging的区别,以及如何提升模型的精度Adaboost的基本思路对于Boosting方法来说,有两个问题需要给出答案:第一个是每一轮学习应该如何改变数据的概率分布,第二个是如何将各个弱分类器组合起来。对于Adaboost来说,解决上述的两个问题的方式是:1. 提高那些被前一轮分类器错误分类的样本的权重,而降低那些被正确分类的样本的权重。这样一来,那些在上一轮分类器中没有得到正确分类的样本,由于其权重的

2021-07-25 10:09:11 155

原创 python基础练习题

有四个数字:1、2、3、4,能组成多少个互不相同且无重复的三位数?各是多少?for i in range(1,5): for j in range(1,5): for k in range(1,5): if (i != k) and (i != j) and (j != k): print(i,j,k)企业发放的奖金根据利润提成。利润(I)低于或等于10万元时,奖金可提10%;利润高于10万元,低于10万元时,低.

2021-07-21 21:06:29 180

原创 集成学习Ensemble learning

目录Ensemble learningBagging模型Boosting模型Stacking模型Ensemble learning目的:让机器学习训练效果更好Bagging:训练各个分类器取平均f(x)=1M∑m=1Mfm(x)f(x)=\frac{1}{M}\sum_{m=1}^{M}f_m(x)f(x)=M1​m=1∑M​fm​(x)Boosting:从弱学习器开始加强,通过加权进行训练Fm=Fm−1+argminh∑i=1nL(yi,Fm−1(xi)+h(xi))F_m=F_{m-1}+arg

2021-07-21 12:40:18 158

原创 Support Vector Machine支持向量机

SVM口头禅SVM有三宝:间隔、对偶、核技巧分类{hard−marginSVMsoft−marginSVMkernelSVM \begin{cases} hard-margin\quad SVM \\ soft-margin\quad SVM \\ kernel\quad SVM \end{cases}⎩⎪⎨⎪⎧​hard−marginSVMsoft−marginSVMkernelSVM​SV

2021-07-19 20:51:38 103

原创 偏差与方差

什么是偏差和方差我们想要建立一个线性回归模型,可以通过输入中国人身高去预测我们的体重。但是显然我们没有办法把全中国13亿人做一次人口普查,拿到13亿人的身高体重去建立模型。我们能做的就是从13亿中抽1000个样本进行建模,我们对这个抽样的过程重复100遍,就会得到100个1000人的样本集。我们使用线性回归模型估计参数就能得到100个线性回归模型。由于样本抽取具有随机性,我们得到的100个模型不可能参数完全一样,那么这100个模型之间的差异就叫做方差。而偏差则是预测值与真实值之间的差距。偏差度量了学习算法

2021-07-18 23:59:31 757

原创 约束优化问题

约束优化问题(原问题Primal Problem)原问题(p){目标函数:minf(x),xi∈Rp约束条件:s.t.{mi(x)≤0,i=1,2,...,Mnj(x)=0,j=1,2,...,N原问题(p) \begin{cases} 目标函数 :min f(x), & x_i\in \Bbb{R}^p\\[2ex] 约束条件 :s.t. \begin{cases} \color{red}m_i(x)\leq0, & i=1

2021-07-15 21:47:40 855

原创 线性回归-

最小二乘估计数据数据集D={(x1,y1),(x2,y2),...,(xn,yn)},(xi∈Rp,yi∈R,i=1,2,...,N)D=\{(x_1,y_1),(x_2,y_2),...,(x_n,y_n)\} ,(x_i\in R^p,y_i\in R,i=1,2,...,N)D={(x1​,y1​),(x2​,y2​),...,(xn​,yn​)},(xi​∈Rp,yi​∈R,i=1,2,...,N)样本X(其中xix_ixi​为列向量)X=[x1Tx2T...xnT]=[x11x12

2021-07-15 21:40:31 488

原创 Rosenbrock函数

定义在数学最优化中,Rosenbrock函数是一个用来测试最优化算法性能的非凸函数,由Howard Harry Rosenbrock在1960年提出 。也称为Rosenbrock山谷或Rosenbrock香蕉函数,也简称为香蕉函数。Rosenbrock函数的定义如下:f(x,y)=(a−x)2+b(y−x2)e2.f(x,y) = (a-x)^2+b(y-x^2)e^2.f(x,y)=(a−x)2+b(y−x2)e2.Rosenbrock函数的每个等高线大致呈抛物线形,其全域最小值也位在抛物线

2021-07-13 18:31:45 18214 2

原创 python中的位运算

原码、反码和补码原码:就是其二进制表示(注意,有一位符号位)。反码:正数的反码就是原码,负数的反码是符号位不变,其余位取反(对应正数按位取反)。补码:正数的补码就是原码,负数的补码是反码+1。符号位:最高位为符号位,0表示正数,1表示负数。在位运算中符号位也参与运算。十进制数原码反码补码300 00 00 1100 00 00 1100 00 00 11-310 00 00 1111 11 11 0011 11 11 01按位运算按位非操作 ~

2021-04-25 20:17:55 519

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除