学习笔记
文章平均质量分 85
记录学习
蓝净云
如果年少无为,那就大器晚成吧;实在不行,就做个快乐的废物吧。
展开
-
Docker Compose安装milvus向量数据库单机版-milvus基本操作
下面演示如何使用PyMilvus库连接到Milvus数据库,创建数据表,插入数据,创建索引,进行搜索、查询、分页查询,以及删除数据表等操作。“params”: 这是一个包含搜索参数的字典,包括 “nprobe” 参数,它指定了搜索时的候选集数量,这里设置为10。“params”: 这是一个包含索引参数的字典,包括 “nlist” 参数,它指定了索引的列表数量,这里设置为128。指定了返回结果的最大数量,只返回满足条件的前4条数据,并指定了要返回的输出字段为 “random”。原创 2023-11-06 09:27:46 · 2191 阅读 · 0 评论 -
计算文本相似度,输出相似度最高的n个
【代码】计算文本相似度,输出相似度最高的n个。原创 2023-10-26 17:25:05 · 690 阅读 · 0 评论 -
PCA降维可视化
【代码】PCA降维可视化。原创 2023-10-21 14:52:47 · 359 阅读 · 0 评论 -
绘制核密度估计图
核密度估计图(Kernel Density Estimation,KDE)是一种用于估计数据分布的非参数方法,通常用于可视化和理解数据的分布情况。它通过平滑地估计数据的概率密度函数(PDF)来显示数据的分布特征,尤其在连续变量上非常有用。KDE图通常表现为一条平滑的曲线,描述了数据在特定值附近的密度。这条曲线称为核密度估计。核密度估计是通过将每个数据点视为一个小的概率分布(通常是高斯分布或其他核函数)并将它们叠加而得到的。这样,核密度估计提供了一个对数据分布的连续估计,而不仅仅是一个直方图或散点图。原创 2023-10-21 14:31:23 · 7474 阅读 · 3 评论 -
协同过滤推荐算法UserCF、ItemCF
cosine相似度计算简单方便,一般较为常用。但是,当用户的评分数据存在 bias 时,效果往往不那么好。原创 2023-10-20 18:18:23 · 364 阅读 · 0 评论 -
从零开始搭建第一个django项目
django原创 2023-10-18 11:27:57 · 889 阅读 · 0 评论 -
计算机组成原理(第三版)唐朔飞-第五章输入输出系统-课后习题
计算机组成原理(第三版)唐朔飞-第五章输入输出系统-课后习题原创 2022-10-15 22:14:14 · 50271 阅读 · 11 评论 -
计算机组成原理(第三版)唐朔飞-第三章系统总线-课后习题
计算机组成原理(第三版)唐朔飞-第三章系统总线-课后习题原创 2022-10-15 18:46:22 · 50223 阅读 · 12 评论 -
计算机组成原理(第三版)唐朔飞-第四章存储器-课后习题
计算机组成原理(第三版)唐朔飞-第四章存储器-课后习题原创 2022-10-14 16:45:55 · 132689 阅读 · 39 评论 -
计算机组成原理(第三版)唐朔飞-第九章控制单元的功能-课后习题
计算机组成原理(第三版)唐朔飞-第九章控制单元的功能-课后习题原创 2022-10-13 22:53:20 · 33459 阅读 · 12 评论 -
计算机组成原理(第三版)唐朔飞-第十章控制单元的设计-课后习题
计算机组成原理(第三版)唐朔飞-第十章控制单元的设计-课后习题原创 2022-10-13 18:15:21 · 23041 阅读 · 10 评论 -
计算机组成原理(第三版)唐朔飞-第八章CPU的结构和功能-课后习题
8.1CPU有哪些功能?画出其结构框图并简要说明每个部件的作用。原创 2022-10-11 19:23:04 · 43796 阅读 · 4 评论 -
计算机组成原理(第三版)唐朔飞-第一章第二章-课后习题
计算机组成原理原创 2022-10-10 22:45:10 · 55991 阅读 · 26 评论 -
计算机组成原理(第三版)唐朔飞-第六章计算机的运算方法-课后习题(17-32)
计算机组成原理(第三版)唐朔飞-第六章计算机的运算方法-课后习题(17-32)原创 2022-10-08 16:07:36 · 96636 阅读 · 30 评论 -
计算机组成原理(第三版)唐朔飞-第六章计算机的运算方法-课后习题(1-16)
计算机组成原理(第三版)唐朔飞-第六章计算机的运算方法-课后习题(1-16)原创 2022-10-07 13:03:25 · 64749 阅读 · 25 评论 -
计算机组成原理(第三版)唐朔飞-第七章指令系统-课后习题
机器字长是指CPU一次能处理数据的位数通常与CPU的寄存器位数有关。指令字长是指机器指令中二进制代码的总位数。存储字长是指存储单元中存放二进制代码的总位数。三者可以相等也可以不等视不同机器而定。答:OP(4位)A1(6位)A_1(6位)A1(6位)A2(6位)A_2(6位)A2(6位)设二地址指令格式为该指令系统的基本格式,4位操作码共有16种编码,其中13种用来定义二地址指令,还剩3种可用作扩展标志。一地址指令条数=3∗26=192。原创 2022-10-05 23:54:38 · 57728 阅读 · 22 评论 -
SQL学习笔记5-SQL高级处理
SQL高级处理原创 2022-09-24 20:43:49 · 171 阅读 · 0 评论 -
SQL学习笔记4-集合运算
集合在数学领域表示“各种各样的事物的总和”, 在数据库领域表示记录的集合. 具体来说,表、视图和查询的执行结果都是记录的集合, 其中的元素为表或者查询结果中的每一行。在标准 SQL 中, 分别对检索结果使用UNION,INTERSECT,EXCEPT来将检索结果进行并,交和差运算, 像UNION,INTERSECT,EXCEPT这种用来进行集合运算的运算符称为集合运算符。以下的文氏图展示了几种集合的基本运算。[图片来源于网络]原创 2022-09-21 10:49:38 · 746 阅读 · 0 评论 -
SQL学习笔记3-复杂一点的查询
视图是一个虚拟的表,不同于直接操作数据表,视图是依据SELECT语句来创建的,所以操作视图时会根据创建视图的SELECT语句生成一张虚拟表,然后在这张虚拟表上做SQL操作。子查询指一个查询语句嵌套在另一个查询语句内部的查询,这个特性从 MySQL 4.1 开始引入,在 SELECT 子句中先计算子查询,子查询结果作为外层另一个查询的过滤条件,查询可以基于一个表或者多个表。谓词就是返回值为真值的函数。包括。LIKEBETWEENINEXISTSCASE 表达式是函数的一种。原创 2022-09-18 11:35:28 · 548 阅读 · 0 评论 -
SQL学习笔记2-基础查询与排序
sql基础查询语句原创 2022-09-15 11:03:46 · 281 阅读 · 0 评论 -
SQL学习笔记1-初识SQL
初识SQL原创 2022-09-13 23:23:44 · 197 阅读 · 0 评论 -
MySQL学习笔记0-MySQL的卸载与安装以及连接
MySQL的卸载与安装以及连接原创 2022-07-21 09:30:15 · 170 阅读 · 0 评论 -
粤嵌GEC6818-学习笔记2-屏幕相关及音频播放
GEC6818屏幕相关及音乐播放。原创 2022-07-16 15:34:40 · 10372 阅读 · 1 评论 -
粤嵌GEC6818-学习笔记1-基础篇
如何设置共享文件夹? Linux有哪些常用指令? 如何进行交叉开发? 如何查看C语言库函数的使用说明? 如何使用C语言进行文件操作?原创 2022-06-25 00:31:33 · 15055 阅读 · 1 评论 -
数据结构-学习笔记
数据结构原创 2022-04-28 17:02:29 · 1256 阅读 · 1 评论 -
C++初级算法-学习笔记
c++初级算法原创 2022-04-24 12:19:56 · 1759 阅读 · 0 评论 -
C++语法基础-学习笔记
目录编程入门变量计算机的内存变量的命名规则变量的初始化变量的输出常量顺序结构程序设计数据类型数值整数类型字符整数类型浮点类型算术运算符与表达式基本算术与赋值运算符自增自减运算符位运算符与表达式循环结构程序设计for循环多重循环数组一维数组数组的声明数组元素的访问数组的初始化数组的输入输出多维数组多维数组的声明多维数组访问元素多维数组的初始化多维数组的输入输出字符串字符数组string类型函数与结构体编程入门变量计算机的内存变量指的是会随着程序运算而改变的量。Tips: 比如用户在售卖机购买的可乐数原创 2022-04-16 02:01:59 · 2796 阅读 · 0 评论 -
卷积神经网络CNN
目录为什么选择卷积神经网络卷积神经网络的基本架构卷积层convolutional layer卷积convolution特征提取填充padding步幅stride卷积神经网络卷积卷积层的作用池化层pooling layers全连接层fully connected layer卷积层VS全连接层卷积神经网络模型典型的卷积神经网络模型LeNet-5AlexNet分组卷积应用Deep DreamDeep StylePlaying Go语音文本分类学习参考为什么选择卷积神经网络\qquad卷积神经网络(Convol原创 2022-01-22 20:14:04 · 1026 阅读 · 0 评论 -
监督学习与无监督学习的区别
目录机器学习与深度学习监督学习与无监督学习机器学习与深度学习机器学习可以被定义为从数据中总结经验,从数据中找出某种规律或者模型,并利用这些经验、规律或者模型来解决实际问题。机器学习算法主要包括决策树、聚类、贝叶斯分类、支持向量机、随机森林等。按照学习方法的不同进行划分,机器学习算法可以分为监督学习、无监督学习、半监督学习、集成学习、深度学习和强化学习。深度学习是机器学习的一个分支,是一种实现机器学习的技术。深度学习本来并不是一种独立的学习方法,但由于近几年该技术发展迅猛,一些特有的学习手段和模型相继原创 2022-01-10 18:38:19 · 632 阅读 · 0 评论 -
为什么需要对数值类型的特征做归一化?
为什么需要对数值类型的特征做归一化?对数值类型的特征做归一化可以将所有的特征都统一到一个大致相同的数值区间内。最常用的方法主要有以下两种。线性函数归一化(Min-Max Scaling)。它对原始数据进行线性变换,使得结果映射到[0,1]的范围,实现对原始数据的等比缩放。归一化公式如下Xnorm=X−XminXmax−Xmin X_{norm}=\frac{X-X_{min}}{X_{max}-X_{min}} Xnorm=Xmax−XminX−Xmin其中XXX为原始数据,Xmin、X原创 2021-10-14 22:05:02 · 301 阅读 · 0 评论 -
天池工业蒸汽量预测
文章目录蒸汽量预测解题思路蒸汽量预测背景介绍火力发电的基本原理是:燃料在燃烧时加热水生成蒸汽,蒸汽压力推动汽轮机旋转,然后汽轮机带动发电机旋转,产生电能。在这一系列的能量转化中,影响发电效率的核心是锅炉的燃烧效率,即燃料燃烧加热水产生高温高压蒸汽。锅炉的燃烧效率的影响因素很多,包括锅炉的可调参数,如燃烧给量,一二次风,引风,返料风,给水水量;以及锅炉的工况,比如锅炉床温、床压,炉膛温度、压力,过热器的温度等。我们如何使用以上的信息,根据锅炉的工况,预测产生的蒸汽量,来为我国的工业届的产量预测贡献自己原创 2021-07-29 13:41:01 · 562 阅读 · 0 评论 -
Blending-Stacking
Blending集成学习方式:(1) 将数据划分为训练集和测试集(test_set),其中训练集需要再次划分为训练集(train_set)和验证集(val_set);(2) 创建第一层的多个模型,这些模型可以使同质的也可以是异质的;(3) 使用train_set训练步骤2中的多个模型,然后用训练好的模型预测val_set和test_set得到val_predict, test_predict1;(4) 创建第二层的模型,使用val_predict作为训练集训练第二层的模型;(5) 使用第二层训练好原创 2021-07-28 21:26:25 · 102 阅读 · 0 评论 -
Boosting
文章目录Adaboost的基本思路GBDT的基本思路AdaBoost与GBDTBoosting与Bagging的区别,以及如何提升模型的精度Adaboost的基本思路对于Boosting方法来说,有两个问题需要给出答案:第一个是每一轮学习应该如何改变数据的概率分布,第二个是如何将各个弱分类器组合起来。对于Adaboost来说,解决上述的两个问题的方式是:1. 提高那些被前一轮分类器错误分类的样本的权重,而降低那些被正确分类的样本的权重。这样一来,那些在上一轮分类器中没有得到正确分类的样本,由于其权重的原创 2021-07-25 10:09:11 · 155 阅读 · 0 评论 -
python基础练习题
有四个数字:1、2、3、4,能组成多少个互不相同且无重复的三位数?各是多少?for i in range(1,5): for j in range(1,5): for k in range(1,5): if (i != k) and (i != j) and (j != k): print(i,j,k)企业发放的奖金根据利润提成。利润(I)低于或等于10万元时,奖金可提10%;利润高于10万元,低于10万元时,低.原创 2021-07-21 21:06:29 · 180 阅读 · 0 评论 -
集成学习Ensemble learning
目录Ensemble learningBagging模型Boosting模型Stacking模型Ensemble learning目的:让机器学习训练效果更好Bagging:训练各个分类器取平均f(x)=1M∑m=1Mfm(x)f(x)=\frac{1}{M}\sum_{m=1}^{M}f_m(x)f(x)=M1m=1∑Mfm(x)Boosting:从弱学习器开始加强,通过加权进行训练Fm=Fm−1+argminh∑i=1nL(yi,Fm−1(xi)+h(xi))F_m=F_{m-1}+arg原创 2021-07-21 12:40:18 · 158 阅读 · 0 评论 -
Support Vector Machine支持向量机
SVM口头禅SVM有三宝:间隔、对偶、核技巧分类{hard−marginSVMsoft−marginSVMkernelSVM \begin{cases} hard-margin\quad SVM \\ soft-margin\quad SVM \\ kernel\quad SVM \end{cases}⎩⎪⎨⎪⎧hard−marginSVMsoft−marginSVMkernelSVMSV原创 2021-07-19 20:51:38 · 103 阅读 · 0 评论 -
偏差与方差
什么是偏差和方差我们想要建立一个线性回归模型,可以通过输入中国人身高去预测我们的体重。但是显然我们没有办法把全中国13亿人做一次人口普查,拿到13亿人的身高体重去建立模型。我们能做的就是从13亿中抽1000个样本进行建模,我们对这个抽样的过程重复100遍,就会得到100个1000人的样本集。我们使用线性回归模型估计参数就能得到100个线性回归模型。由于样本抽取具有随机性,我们得到的100个模型不可能参数完全一样,那么这100个模型之间的差异就叫做方差。而偏差则是预测值与真实值之间的差距。偏差度量了学习算法原创 2021-07-18 23:59:31 · 757 阅读 · 0 评论 -
约束优化问题
约束优化问题(原问题Primal Problem)原问题(p){目标函数:minf(x),xi∈Rp约束条件:s.t.{mi(x)≤0,i=1,2,...,Mnj(x)=0,j=1,2,...,N原问题(p) \begin{cases} 目标函数 :min f(x), & x_i\in \Bbb{R}^p\\[2ex] 约束条件 :s.t. \begin{cases} \color{red}m_i(x)\leq0, & i=1原创 2021-07-15 21:47:40 · 855 阅读 · 0 评论 -
线性回归-
最小二乘估计数据数据集D={(x1,y1),(x2,y2),...,(xn,yn)},(xi∈Rp,yi∈R,i=1,2,...,N)D=\{(x_1,y_1),(x_2,y_2),...,(x_n,y_n)\} ,(x_i\in R^p,y_i\in R,i=1,2,...,N)D={(x1,y1),(x2,y2),...,(xn,yn)},(xi∈Rp,yi∈R,i=1,2,...,N)样本X(其中xix_ixi为列向量)X=[x1Tx2T...xnT]=[x11x12原创 2021-07-15 21:40:31 · 488 阅读 · 0 评论 -
Rosenbrock函数
定义在数学最优化中,Rosenbrock函数是一个用来测试最优化算法性能的非凸函数,由Howard Harry Rosenbrock在1960年提出 。也称为Rosenbrock山谷或Rosenbrock香蕉函数,也简称为香蕉函数。Rosenbrock函数的定义如下:f(x,y)=(a−x)2+b(y−x2)e2.f(x,y) = (a-x)^2+b(y-x^2)e^2.f(x,y)=(a−x)2+b(y−x2)e2.Rosenbrock函数的每个等高线大致呈抛物线形,其全域最小值也位在抛物线原创 2021-07-13 18:31:45 · 18214 阅读 · 2 评论
分享