Docker Compose安装milvus向量数据库单机版-milvus基本操作 下面演示如何使用PyMilvus库连接到Milvus数据库,创建数据表,插入数据,创建索引,进行搜索、查询、分页查询,以及删除数据表等操作。“params”: 这是一个包含搜索参数的字典,包括 “nprobe” 参数,它指定了搜索时的候选集数量,这里设置为10。“params”: 这是一个包含索引参数的字典,包括 “nlist” 参数,它指定了索引的列表数量,这里设置为128。指定了返回结果的最大数量,只返回满足条件的前4条数据,并指定了要返回的输出字段为 “random”。
绘制核密度估计图 核密度估计图(Kernel Density Estimation,KDE)是一种用于估计数据分布的非参数方法,通常用于可视化和理解数据的分布情况。它通过平滑地估计数据的概率密度函数(PDF)来显示数据的分布特征,尤其在连续变量上非常有用。KDE图通常表现为一条平滑的曲线,描述了数据在特定值附近的密度。这条曲线称为核密度估计。核密度估计是通过将每个数据点视为一个小的概率分布(通常是高斯分布或其他核函数)并将它们叠加而得到的。这样,核密度估计提供了一个对数据分布的连续估计,而不仅仅是一个直方图或散点图。
shap-An introduction to explainable AI with Shapley values shap-An introduction to explainable AI with Shapley values
shap-Basic SHAP Interaction Value Example in XGBoost `SHAP值`(Shapley Additive exPlanations)的主要思想就是Shapley值,Shapley值是一个来自合作博弈论(coalitional game theory)的方法,
Multi-Framework Serving Runtimes-How to write a custom predictor-KServe 预处理程序使用BERT标记器将段落和问题转换为BERT输入预测处理程序使用PYTHON REST API调用Triton推理服务器后处理处理程序将原始预测转换为具有概率的答案请在此处找到代码示例。当开箱即用的服务运行时不适合您的需求时,您可以选择使用KServe ModelServer API构建自己的模型服务器,作为自定义服务运行时部署在KServe上。
Model Monitoring - KServe 由于在下面的样本输出中,不同的影响小于1,因此年龄大于25岁的申请人获得贷款的概率显著高于年龄小于或等于25岁的申请者获得贷款的可能性。在这个例子中,我们将研究我们部署的模型对年龄>25岁的人与年龄<=25岁的人的偏见,并看看债权人是否不公平地对待了这两者。我们将使用MNIST数据集,这是一个手写数字的数据集,并找到可能使模型错误预测分类的对抗性示例,从而显示模型对对抗性攻击的脆弱性。最后,现在我们已经收集了我们模型的一些预测及其相应的输入,我们将把它们发送到AIF服务器,以计算偏差度量。