蓝净云
码龄5年
关注
提问 私信
  • 博客:960,674
    社区:41
    960,715
    总访问量
  • 64
    原创
  • 18,138
    排名
  • 2,867
    粉丝
  • 161
    铁粉
  • 学习成就

个人简介:如果年少无为,那就大器晚成吧;实在不行,就做个快乐的废物吧。

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 加入CSDN时间: 2019-10-10
博客简介:

weixin_45735391的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    7
    当前总分
    3,856
    当月
    63
个人成就
  • 获得3,841次点赞
  • 内容获得243次评论
  • 获得14,795次收藏
  • 代码片获得23,543次分享
创作历程
  • 1篇
    2024年
  • 37篇
    2023年
  • 28篇
    2022年
  • 16篇
    2021年
成就勋章
TA的专栏
  • 大模型
    1篇
  • shap
    2篇
  • aix360
    3篇
  • Kserve
    16篇
  • 汇总
    2篇
  • 大数据
    8篇
  • 计算机组成原理
    12篇
  • 深度学习
    2篇
  • 机器学习
    7篇
  • 学习笔记
    43篇
兴趣领域 设置
  • 人工智能
    机器学习
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

186人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

llama-3.1下载部署

点击 头像->setting->access token 创建token。详情页填写申请后等待审核。
原创
发布博客 2024.07.30 ·
627 阅读 ·
7 点赞 ·
0 评论 ·
7 收藏

Docker Compose安装milvus向量数据库单机版-milvus基本操作

下面演示如何使用PyMilvus库连接到Milvus数据库,创建数据表,插入数据,创建索引,进行搜索、查询、分页查询,以及删除数据表等操作。“params”: 这是一个包含搜索参数的字典,包括 “nprobe” 参数,它指定了搜索时的候选集数量,这里设置为10。“params”: 这是一个包含索引参数的字典,包括 “nlist” 参数,它指定了索引的列表数量,这里设置为128。指定了返回结果的最大数量,只返回满足条件的前4条数据,并指定了要返回的输出字段为 “random”。
原创
发布博客 2023.11.06 ·
2192 阅读 ·
1 点赞 ·
0 评论 ·
7 收藏

计算文本相似度,输出相似度最高的n个

【代码】计算文本相似度,输出相似度最高的n个。
原创
发布博客 2023.10.26 ·
690 阅读 ·
0 点赞 ·
0 评论 ·
6 收藏

PCA降维可视化

【代码】PCA降维可视化。
原创
发布博客 2023.10.21 ·
359 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

绘制核密度估计图

核密度估计图(Kernel Density Estimation,KDE)是一种用于估计数据分布的非参数方法,通常用于可视化和理解数据的分布情况。它通过平滑地估计数据的概率密度函数(PDF)来显示数据的分布特征,尤其在连续变量上非常有用。KDE图通常表现为一条平滑的曲线,描述了数据在特定值附近的密度。这条曲线称为核密度估计。核密度估计是通过将每个数据点视为一个小的概率分布(通常是高斯分布或其他核函数)并将它们叠加而得到的。这样,核密度估计提供了一个对数据分布的连续估计,而不仅仅是一个直方图或散点图。
原创
发布博客 2023.10.21 ·
7475 阅读 ·
5 点赞 ·
3 评论 ·
51 收藏

协同过滤推荐算法UserCF、ItemCF

cosine相似度计算简单方便,一般较为常用。但是,当用户的评分数据存在 bias 时,效果往往不那么好。
原创
发布博客 2023.10.20 ·
365 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

从零开始搭建第一个django项目

django
原创
发布博客 2023.10.18 ·
890 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

shap-An introduction to explainable AI with Shapley values

shap-An introduction to explainable AI with Shapley values
原创
发布博客 2023.09.24 ·
498 阅读 ·
0 点赞 ·
2 评论 ·
1 收藏

shap-Basic SHAP Interaction Value Example in XGBoost

`SHAP值`(Shapley Additive exPlanations)的主要思想就是Shapley值,Shapley值是一个来自合作博弈论(coalitional game theory)的方法,
原创
发布博客 2023.09.24 ·
876 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

AIX360-CEMExplainer: MNIST Example

CEMBexplainer:MNIST示例官方代码在。
原创
发布博客 2023.09.23 ·
266 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

aix360-gec

记录一下学习过程,官方的代码在。
原创
发布博客 2023.09.23 ·
220 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

conda创建虚拟环境安装aix360

windows下在用户文件夹下.condarc,注意该文件是隐藏文件,pip文件夹下创建pip.ini配置文件。进入到用户文件夹,创建pip文件夹。
原创
发布博客 2023.09.23 ·
396 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

KServe Documentation Website

kserve
翻译
发布博客 2023.09.09 ·
105 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Supported Model Frameworks/Formats - KServe

supported model frameworks/formats-kserve
翻译
发布博客 2023.09.09 ·
1581 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Multi-Framework Serving Runtimes-How to write a custom predictor-KServe

预处理程序使用BERT标记器将段落和问题转换为BERT输入预测处理程序使用PYTHON REST API调用Triton推理服务器后处理处理程序将原始预测转换为具有概率的答案请在此处找到代码示例。当开箱即用的服务运行时不适合您的需求时,您可以选择使用KServe ModelServer API构建自己的模型服务器,作为自定义服务运行时部署在KServe上。
翻译
发布博客 2023.09.09 ·
930 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Model Serving Control Plane - KServe Documentation Website

model serving control plane - kserve
翻译
发布博客 2023.09.08 ·
715 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Model Explainability - KServe

model explainability-kserve
翻译
发布博客 2023.09.06 ·
360 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Inference Graph -KServe

inference graph-kserve
翻译
发布博客 2023.09.06 ·
220 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

Inference Observability -KServe

inference observablity-kserve
翻译
发布博客 2023.09.05 ·
422 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Model Monitoring - KServe

由于在下面的样本输出中,不同的影响小于1,因此年龄大于25岁的申请人获得贷款的概率显著高于年龄小于或等于25岁的申请者获得贷款的可能性。在这个例子中,我们将研究我们部署的模型对年龄>25岁的人与年龄<=25岁的人的偏见,并看看债权人是否不公平地对待了这两者。我们将使用MNIST数据集,这是一个手写数字的数据集,并找到可能使模型错误预测分类的对抗性示例,从而显示模型对对抗性攻击的脆弱性。最后,现在我们已经收集了我们模型的一些预测及其相应的输入,我们将把它们发送到AIF服务器,以计算偏差度量。
翻译
发布博客 2023.09.05 ·
382 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多