一.K-近邻算法
k-近邻算法优点:精度高,对异常值不敏感,无数据输入假定。
缺点:计算复杂度高,空间复杂度高
适用数据范围:数值型和标称型
1.k-近邻算法的工作原理:存在一个样本数据集合,也称作训练样本集合,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类的对应关系。输入没标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似的数据的分类标签。一般来说我们只选择样本数据集中前k个最相似的数据,通常k是不大于20的整数。最后选择k个最相似的数据中出现次数最多的分类,作为新数据的分类。
k-近邻算法的一般流程(1)收集数据:可以使用任何方法
(2)准备数据:距离计算所需要的数值,最好是结构化的数据格式
(3)分析数据:可以使用任何方法
(4)测试算法:计算错误率
2.k-近邻算法的代码
总结代码之前,想先总结一下此次算法中出现的相关函数和关键字
(1)储备知识:
<1>shape函数:shape函数是numpy.core.fromnumeric中的函数,它的功能是读取矩阵的长度,比如shape[0]就是读取矩阵第一维度的长度。
详细见shape用法
<2>tile函数:基本格式tile(a,reps).详细内容建议参考以下两个网址:
tile讲解一
tile讲解二
<3>axis关键字:起作用的话就是合并同一维度的数据成一个,换种说法就是同一维度对应元素加和。详细内容请参考:axis讲解
<4>argsor()函数:排序函数,默认值时为从小到大排序,argsort函数返回的是数组值从小到大的索引值
<5>iteritems()函数:iteritems()返回一个迭代器(迭代器是可以返回相同类型值的有序序列的一段代码)
<6>itemgetter():itemgetter(a),对元组或者列表按照某一属性大小关系进行排序。参考网站1,参考网站2
(2)正式代码:
def classify0(intX, dataSet, labels, k):
# intX是测试的用例,dataset训练集,labels是训练集对应的标签,k是用于选择最近邻的数目
dataSetSize = dataSet.shape[0]
# 用欧式距离公式进行距离计算
diffMat = tile(intX, (dataSetSize,1)) - dataSet # numpy.tile进行数组的重复生成
sqdiffMat = diffMat**2
sqDistances = sqdiffMat.sum(axis=1)
distances = sqDistances**0.5
sortedDistIndicies = distances.argsort() # 返回的是数组值从小到大的索引值
classCount = {}
for i in range(k):
voteIlabel = labels[sortedDistIndicies[i]]
classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1
sortedClassCount = sorted(classCount.items(), key=op.itemgetter(1), reverse=True)
# python3中函数为:items(),python2中函数为:iteritems()
return sortedClassCount[0][0]
二.决策树
决策树 优点:计算复杂度不高,输出结果易于理解,对中间值的缺失不敏感,可以处理不相关的特征数据 缺点:可能会产生过度匹配问题 适用数据类型:数值型和标称型
1.信息增益的计算:

计算给定数据的香农熵:
from math import log
def calcShannonEnt(dataSet):
numEntries=len(dataSet)
labelCounts={}
for featVec in dataSet:
currentLabel=featVec[-1]
if currentLabel not in labelCounts.keys() :
labelCounts[currentLabel]=0
labelCounts[currentLabel]+=1
shannonEnt=0.0
for key in labelCounts:
prob=float((labelCounts[key]))/numeEntries
shannonEnt-=prob*log(prob,2)
return shannonEnt
按照给定特征划分数据集:
def splitDataSet(dataSet,axis,value): # 按某个特征分类后的数据
retDataSet=[]
for featVec in dataSet:
if featVec[axis]==value:
reducedFeatVec =featVec[:axis]
reducedFeatVec.extend(featVec[axis+1:])
retDataSet.append(reducedFeatVec)
return retDataSet
选择最好的数据集合划分方式:
def chooseBestFeatureToSplit(dataSet): # 选择最优的分类特征
numFeatures = len(dataSet[0])-1
baseEntropy = calcShannonEnt(dataSet) # 原始的熵
bestInfoGain = 0
bestFeature = -1
for i in range(numFeatures):
featList = [example[i] for example in dataSet]
uniqueVals = set(featList)
newEntropy = 0
for value in uniqueVals:
subDataSet = splitDataSet(dataSet,i,value)
prob =len(subDataSet)/float(len(dataSet))
newEntropy +=prob*calcShannonEnt(subDataSet) # 按特征分类后的熵
infoGain = baseEntropy - newEntropy # 原始熵与按特征分类后的熵的差值
if (infoGain>bestInfoGain): # 若按某特征划分后,熵值减少的最大,则次特征为最优分类特征
bestInfoGain=infoGain
bestFeature = i
return bestFeature
按分类后类别数量排序:
def majorityCnt(classList):
classCount={}
for vote in classList:
if vote not in classCount.keys():
classCount[vote]=0
classCount[vote]+=1
sortedClassCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)
return sortedClassCount[0][0]
创建树的函数代码:
def createTree(dataSet,labels):
classList=[example[-1] for example in dataSet] # 类别:男或女
if classList.count(classList[0])==len(classList):
return classList[0]
if len(dataSet[0])==1:
return majorityCnt(classList)
bestFeat=chooseBestFeatureToSplit(dataSet) #选择最优特征
bestFeatLabel=labels[bestFeat]
myTree={bestFeatLabel:{}} #分类结果以字典形式保存
del(labels[bestFeat])
featValues=[example[bestFeat] for example in dataSet]
uniqueVals=set(featValues)
for value in uniqueVals:
subLabels=labels[:]
myTree[bestFeatLabel][value]=createTree(splitDataSet\
(dataSet,bestFeat,value),subLabels)
return myTree
本文深入解析了K-近邻算法与决策树算法的原理与应用,包括算法的优点、缺点、适用范围及具体实现代码。K-近邻算法通过计算距离来分类新数据,而决策树则通过信息增益选择最佳特征进行数据划分。
20

被折叠的 条评论
为什么被折叠?



