数据结构与算法(5)

本节主要讲解的是部分排序算法,包括快速排序、归并排序、二分法查找。

1. 快速排序

快速排序(英语:Quicksort),又称划分交换排序(partition-exchange sort),通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。
步骤为:

1.1 快速排序的分析

  1. 从数列中挑出一个元素,称为"基准"(pivot),
  2. 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区结束之后,该基准就处于数列的中间位置。这个称为分区(partition)操作。
  3. 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。

递归的最底部情形,是数列的大小是零或一,也就是永远都已经被排序好了。虽然一直递归下去,但是这个算法总会结束,因为在每次的迭代(iteration)中,它至少会把一个元素摆到它最后的位置去。
在这里插入图片描述

1.2 快速排序的实现与时间复杂度

def quick_sort(alist, start, end):
    """快速排序"""

    # 递归的退出条件
    if start >= end:
        return

    # 设定起始元素为要寻找位置的基准元素
    mid = alist[start]

    # low为序列左边的由左向右移动的游标
    low = start

    # high为序列右边的由右向左移动的游标
    high = end

    while low < high:
        # 如果low与high未重合,high指向的元素不比基准元素小,则high向左移动
        while low < high and alist[high] >= mid:
            high -= 1
        # 将high指向的元素放到low的位置上
        alist[low] = alist[high]

        # 如果low与high未重合,low指向的元素比基准元素小,则low向右移动
        while low < high and alist[low] < mid:
            low += 1
        # 将low指向的元素放到high的位置上
        alist[high] = alist[low]

    # 退出循环后,low与high重合,此时所指位置为基准元素的正确位置
    # 将基准元素放到该位置
    alist[low] = mid

    # 对基准元素左边的子序列进行快速排序
    quick_sort(alist, start, low-1)

    # 对基准元素右边的子序列进行快速排序
    quick_sort(alist, low+1, end)


alist = [54,26,93,17,77,31,44,55,20]
quick_sort(alist,0,len(alist)-1)
print(alist)

最优时间复杂度:O(nlogn)
最坏时间复杂度:O(n2)
稳定性:不稳定
从一开始快速排序平均需要花费O(n log n)时间的描述并不明显。但是不难观察到的是分区运算,数组的元素都会在每次循环中走访过一次,使用O(n)的时间。在使用结合(concatenation)的版本中,这项运算也是O(n)。
在最好的情况,每次我们运行一次分区,我们会把一个数列分为两个几近相等的片段。这个意思就是每次递归调用处理一半大小的数列。因此,在到达大小为一的数列前,我们只要作log n次嵌套的调用。这个意思就是调用树的深度是O(log n)。但是在同一层次结构的两个程序调用中,不会处理到原来数列的相同部分;因此,程序调用的每一层次结构总共全部仅需要O(n)的时间(每个调用有某些共同的额外耗费,但是因为在每一层次结构仅仅只有O(n)个调用,这些被归纳在O(n)系数中)。结果是这个算法仅需使用O(n log n)时间。
演示:
在这里插入图片描述

2. 归并排序

归并排序是采用分治法的一个非常典型的应用。归并排序的思想就是先递归分解数组,再合并数组。

2.1 归并排序的分析

将数组分解最小之后,然后合并两个有序数组,基本思路是比较两个数组的最前面的数,谁小就先取谁,取了后相应的指针就往后移一位。然后再比较,直至一个数组为空,最后把另一个数组的剩余部分复制过来即可。
在这里插入图片描述
在这里插入图片描述

2.2 归并排序的实现与时间复杂度

##python2
def merge_sort(alist):
    if len(alist) <= 1:
        return alist
    # 二分分解
    num = len(alist)/2
    left = merge_sort(alist[:num])
    right = merge_sort(alist[num:])
    # 合并
    return merge(left,right)

def merge(left, right):
    '''合并操作,将两个有序数组left[]和right[]合并成一个大的有序数组'''
    #left与right的下标指针
    l, r = 0, 0
    result = []
    while l<len(left) and r<len(right):
        if left[l] < right[r]:
            result.append(left[l])
            l += 1
        else:
            result.append(right[r])
            r += 1
    result += left[l:]
    result += right[r:]
    return result

alist = [54,26,93,17,77,31,44,55,20]
sorted_alist = merge_sort(alist)
print(sorted_alist)

最优时间复杂度:O(nlogn)
最坏时间复杂度:O(nlogn)
稳定性:稳定
空间换时间

3. 常见排序算法效率总结

在这里插入图片描述

4. 二分法查找

搜索是在一个项目集合中找到一个特定项目的算法过程。搜索通常的答案是真的或假的,因为该项目是否存在。 搜索的几种常见方法:顺序查找、二分法查找、二叉树查找、哈希查找。

4.1 什么是二分法查找

二分查找又称折半查找,优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表,且插入删除困难。因此,折半查找方法适用于不经常变动而查找频繁的有序列表。首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步查找前一子表,否则进一步查找后一子表。重复以上过程,直到找到满足条件的记录,使查找成功,或直到子表不存在为止,此时查找不成功。
二分法查找适用于顺序表。
在这里插入图片描述

4.2 二分法查找的两种实现

def binary_search(alist, item):
    """二分法查找非递归实现 """
    first = 0
    last = len(alist) - 1
    while first <= last:
        midpoint = (first + last) // 2
        if alist[midpoint] == item:
            return True
        elif item < alist[midpoint]:
            last = midpoint - 1
        else:
            first = midpoint + 1


    return False
testlist = [0, 1, 2, 8, 13, 17, 19, 32, 42, ]
print(binary_search(testlist, 3))
print(binary_search(testlist, 13))



def binary_search(alist, item):
    """二分法查找递归实现"""
    if len(alist) == 0:
        return False
    else:
        midpoint = len(alist)//2
        if alist[midpoint]==item:
          return True
        else:
          if item<alist[midpoint]:
            return binary_search(alist[:midpoint],item)
          else:
            return binary_search(alist[midpoint+1:],item)

testlist = [0, 1, 2, 8, 13, 17, 19, 32, 42,]
print(binary_search(testlist, 3))
print(binary_search(testlist, 13))

最优时间复杂度:O(1)
最坏时间复杂度:O(logn)

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 深蓝海洋 设计师:CSDN官方博客 返回首页