猛男技术控
码龄5年
关注
提问 私信
  • 博客:996,976
    社区:1,445
    动态:144
    视频:976
    999,541
    总访问量
  • 312
    原创
  • 15,384
    排名
  • 58,478
    粉丝

个人简介:苦心钻研! 勇于实践! 不负韶华!

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:山东省
  • 加入CSDN时间: 2019-10-15
博客简介:

小白不白

查看详细资料
  • 原力等级
    领奖
    当前等级
    9
    当前总分
    7,845
    当月
    19
个人成就
  • Python领域新星创作者
  • 获得3,801次点赞
  • 内容获得1,710次评论
  • 获得12,470次收藏
  • 代码片获得8,024次分享
创作历程
  • 3篇
    2024年
  • 28篇
    2023年
  • 68篇
    2022年
  • 97篇
    2021年
  • 116篇
    2020年
成就勋章
TA的专栏
  • 期末不挂科
    付费
    23篇
  • 数据分析数据挖掘
    付费
    36篇
  • 数学建模
    付费
    41篇
  • MATLAB 基础入门及GUI开发
    付费
    8篇
  • AI开发板
    3篇
  • 脚本
    1篇
  • YOLO
    11篇
  • 有趣小项目
    1篇
  • 异常检测
    9篇
  • 深度学习入门
    16篇
  • 数学原理
    2篇
  • 骨干网络
    2篇
  • 目标检测
    7篇
  • 机器学习基础知识
    14篇
  • 人体姿态估计
    5篇
  • 姿态估计
  • 写bug改bug
    1篇
  • 经典分类模型
    1篇
  • Python脚本
    2篇
  • 数据处理
    3篇
  • OpenCV
    1篇
  • 从小白视角研读西瓜书
    11篇
  • 算法与和数据结构
    14篇
  • C++程序设计从入门到入土
    12篇
  • OCR
    19篇
  • 避免踩坑系列
    5篇
  • python基础
    36篇
  • pytorch
    9篇
  • 深度学习
    34篇
  • 机器学习
    29篇
  • 深度AI科普团队
    23篇
  • 蓝桥杯
    2篇
  • 爬虫
    8篇
  • linux
    2篇
  • 其他知识
    12篇
  • 数据结构
    6篇
  • java基础
    15篇
  • C语言
    13篇
TA的推广
兴趣领域 设置
  • Python
    python
  • 人工智能
    机器学习深度学习数据分析
TA的社区
  • 小白白学AI
    4 成员 21 内容
    创建者
创作活动更多

如何做好一份技术文档?

无论你是技术大神还是初涉此领域的新手,都欢迎分享你的宝贵经验、独到见解与创新方法,为技术传播之路点亮明灯!

183人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

OrangePi AIpro使用yolov8n在安防领域的深思和实战

香橙派Aipro提供的案例完美的执行成功了,学习起来很适合企业开发者用户。往外继续延伸,如果单纯的使用香橙派Aipro做模型的测试也是很可以的,可惜了我这边内存不太够,没办法做太多太消耗内存的东西。需要自己扩展下存储空间就很完美了,运行大模型肯定也不在话下。跑这个yolov8模型时,从拉下来代码,到搭建环境,再到运行结果,都比较顺利。延迟感觉还是稍慢满打满算一张图需要800ms。不知道跑上多路流然后实时检测的情况如何,还有待验证!
原创
发布博客 2024.07.16 ·
1058 阅读 ·
23 点赞 ·
0 评论 ·
26 收藏

OrangePi AIpro在安防领域的深思和实战(旷视科技CNN模型ShuffleNetV1开发案例测试)

整个过程分为三个主要阶段:初始化资源、初始化模型资源和释放资源。每个阶段的日志显示了操作的开始和结束,所有操作均成功完成。香橙派Aipro提供的案例完美的执行成功了,学习起来很适合企业开发者用户。往外继续延伸,如果单纯的使用香橙派Aipro做模型的测试也是很可以的,可惜了我这边内存不太够,没办法做太多太消耗内存的东西。总之就是学习起来毫不费劲,官方文档一应俱全。跑这个模型时挺快的,只是不知道跑上多路流然后实时检测的情况如何,还有待验证!在边缘计算设备中性能还是足够的。
原创
发布博客 2024.07.13 ·
971 阅读 ·
27 点赞 ·
0 评论 ·
30 收藏

Python 正则表达式-验证车牌号是否正确

Python 正则表达式,验证车牌号是否正确。
原创
发布博客 2024.05.16 ·
488 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

我爱上班朗诵稿+ppt,每一句都卡点,爆笑连连

发布资源 2024.02.04 ·
zip

河道漂浮物目标检测数据集,有6200余张图片 内含多个标签,比如bottle,塑料垃圾等

发布资源 2023.11.20 ·
zip

火焰 烟雾数据集,里面有12977张图片,训练精度达到0.935 压缩包里包含训练的pt和数据集网盘地址

发布资源 2023.11.15 ·
zip

YOLOv5二阶段目标检测

有吸烟、打电话等小目标时,可以先检测出人再检测人框里是否有吸烟打电话。该脚本用来测试二阶段精度。
原创
发布博客 2023.10.20 ·
371 阅读 ·
1 点赞 ·
1 评论 ·
3 收藏

文件夹图片相似图片检测并删除相似图片

文件夹图片去重
原创
发布博客 2023.10.20 ·
418 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Python实现监控磁盘空间使用量,读取 sqllite数据库,实现同步删除数据库内容与保存的图像数据

【代码】Python实现监控磁盘空间使用量,读取 sqllite数据库,实现同步删除数据库内容与保存的图像数据。
原创
发布博客 2023.09.08 ·
262 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

SE5 - BM1684 人工智能边缘开发板入门指南 -- 模型转换、交叉编译、yolov5、目标追踪

我们属于SoC模式,即我们在x86主机上基于tpu-nntc和libsophon完成模型的编译量化与程序的交叉编译,部署时将编译好的程序拷贝至SoC平台(1684开发板/SE微服务器/SM模组)中执行。注:以下都是在Ubuntu20.04系统上操作的,当然Ubuntu18和22也是可以的,因为我们主要是用的官方 docker 环境进行配置。
原创
发布博客 2023.08.24 ·
2061 阅读 ·
2 点赞 ·
2 评论 ·
23 收藏

让我们在 Python 中使用 ChatGPT,这是目前的热门话题!

许多人已经知道,ChatGPT 是一种强大的自然语言处理 (NLP) 工具,风靡全球。它用于广泛的应用程序,从生成类似人类的文本到构建聊天机器人和虚拟助手。ChatGPT 受欢迎的原因之一是它建立在基于大量文本数据训练的强大开源 GPT-3 语言模型之上。这使得 ChatGPT 能够生成高度逼真和一致的文本,使其成为对任何参与 NLP 的人来说都是有价值的工具。但真正让 ChatGPT 与众不同的是,它专为与世界上最流行的编程语言之一:Python 一起使用而设计。
原创
发布博客 2023.02.09 ·
7712 阅读 ·
0 点赞 ·
2 评论 ·
31 收藏

使用 PatchCore 进行图像异常检测

我们已经介绍了 PatchCore 的关键概念,并将其应用于医学影像数据集。即使数据集非常有限,我们也看到了一些非常有希望的结果。一般来说,如果您有一个用例,其中正常数据很容易获取但异常数据很昂贵(甚至是先验未知的),anomalib 可能是一个值得考虑的好工具。相关代码与数据集下载:欢迎关注公众号:猛男技术控,回复异常检测。
原创
发布博客 2023.02.07 ·
12036 阅读 ·
12 点赞 ·
13 评论 ·
66 收藏

梯度下降系列博客:5、随机梯度下降代码实战

因此,我们不是对数据集的所有训练示例进行计算,而是随机抽取一个示例并对其进行计算。但是,如果我们的数据集有大量训练示例和/或特征,那么计算参数值的计算量就会很大。**注意:**请注意,我们的成本函数不一定会下降,因为我们每次迭代只取一个随机训练样本,所以不要担心。接下来,我们将计算与我们的预测相关的成本。维度:预测值 = (1, 1)+(200, 3)*(3,1) = (1, 1)+(200, 1) = (200, 1)此外,在这种情况下,由于我们只有一个训练示例,因此我们不需要对所有示例执行求和。
原创
发布博客 2023.02.06 ·
1013 阅读 ·
1 点赞 ·
0 评论 ·
7 收藏

梯度下降系列博客:4、小批量梯度下降算法代码实战

小批量梯度下降 (MBGD) 算法的工作原理在批量梯度下降 (BGD) 算法中,我们考虑算法所有迭代的所有训练示例。然而,在随机梯度下降 (SGD) 算法中,我们只考虑一个随机训练示例。现在,在小批量梯度下降 (MBGD) 算法中,我们在每次迭代中考虑训练示例的随机子集。由于这不像 SGD 那样随机,我们更接近全局最小值。然而,MBGD 很容易陷入局部最小值。让我们举个例子来更好地理解这一点。每次迭代的训练示例数 = 100 万 = 1⁰⁶迭代次数 = 1000 = 1⁰³。
原创
发布博客 2023.02.06 ·
1051 阅读 ·
1 点赞 ·
0 评论 ·
4 收藏

梯度下降系列博客:3、批量梯度下降代码实战

欢迎来到梯度下降系列的结局!在这篇博客中,我们将深入研究梯度下降算法。我们将讨论梯度下降算法的所有有趣风格以及它们在 Python 中的代码示例。我们还将根据每个算法中执行的计算次数来检查算法之间的差异。我们今天不遗余力,因此我们要求您在阅读文档时运行Python文件;这样做将使您对该主题有更准确的理解,从而看到它的实际应用。让我们开始吧!
原创
发布博客 2023.02.05 ·
615 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

梯度下降系列博客:1、梯度下降算法基础

维基百科正式定义短语梯度下降如下:在数学中,梯度下降是一种用于寻找可微函数的局部最小值的一阶迭代优化算法。梯度下降是一种机器学习算法,它迭代运行以找到其参数的最佳值。该算法在更新参数值时考虑函数的梯度、用户定义的学习率和初始参数值。单位向量:单位向量是幅度为 1 的向量。我们如何找到向量的长度或大小?考虑以下向量 u。矢量的长度然后计算为其所有分量平方和的平方根。函数**f(x, y)在向量 u(单位向量)方向上的导数由函数梯度与单位向量 u的****点积**给出。
原创
发布博客 2023.02.05 ·
565 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

梯度下降系列博客:2、梯度下降算法背后的数学直觉

欢迎!今天,我们正在努力开发一种强大的数学直觉,以了解梯度下降 算法如何为其参数找到最佳值。拥有这种感觉可以帮助您发现机器学习输出中的错误,并更加了解梯度下降 算法如何使机器学习如此强大。在接下来的几页中,我们将推导均方误差函数的梯度下降算法方程。我们将使用此博客的结果来编写梯度下降算法的代码。让我们深入研究吧!
原创
发布博客 2023.02.05 ·
284 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

深入探讨YOLOv8 网络架构

我们的基准测试是在英特尔的支持下开发的,是计算机视觉从业者的基准测试,旨在为以下问题提供更好的答案:“该模型在我的自定义数据集上的表现如何?由于我们知道这个模型会不断改进,我们可以将最初的 YOLOv8 模型结果作为基线,并期待随着新迷你版本的发布而进行未来的改进。下面的箱线图告诉我们,当针对 Roboflow 100 基准进行测量时,YOLOv8 有更少的离群值和更好的 mAP。是早期 YOLO 模型中众所周知的棘手部分,因为它们可能代表目标基准框的分布,而不是自定义数据集的分布。
原创
发布博客 2023.02.05 ·
17840 阅读 ·
22 点赞 ·
1 评论 ·
143 收藏

PAC的数学原理

PCA(Principal Component Analysis)是一种常用的数据分析方法。PCA 通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维。网上关于 PCA 的文章有很多,但是大多数只描述了 PCA 的分析过程,而没有讲述其中的原理。这篇文章的目的是介绍 PCA 的基本数学原理,帮助读者了解 PCA 的工作机制是什么。当然我并不打算把文章写成纯数学文章,而是希望用直观和易懂的方式叙述 PCA 的数学原理,所以整个文章不会引入严格的数学推导。
原创
发布博客 2023.02.04 ·
879 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

YOLOv8 Ultralytics:最先进的 YOLO 模型——简介+实战教程

利用以前的 YOLO 版本,,同时为训练模型提供统一框架,以执行在撰写本文时,许多功能尚未添加到 Ultralytics YOLOv8 存储库中。这包括训练模型的完整导出功能集。此外,Ultralytics 将在 Arxiv 上发布一篇论文,将 YOLOv8 与其他最先进的视觉模型进行比较。
原创
发布博客 2023.02.03 ·
44421 阅读 ·
80 点赞 ·
3 评论 ·
448 收藏
加载更多