欧几里得结构数据
在我们日常生活中,最常见到的媒体介质莫过于是图片(image)和视频(video)以及语音(voice)了,这些数据有一个特点就是:“排列整齐”。
它是一类具有很好的平移不变性的数据。对于这类数据以其中一个像素为节点,其邻居节点的数量相同。所以可以很好的定义一个全局共享的卷积核来提取图像中相同的结构。常见这类数据有图像、文本、语言。
1. 图像中的平移不变性:即不管图像中的目标被移动到图片的哪个位置,得到的结果(标签)应该相同的。
2. 卷积被定义为不同位置的特征检测器。

图1.欧几里得结构数据示例
对于某个节点,我们很容易可以找出其邻居节点,就在旁边嘛,不偏不倚。
非欧几里得结构数据
它是一类不具有平移不变性的数据。这类数据以其中的一个为节点,其邻居节点的数量可能不同。常见这类数据有知识图谱、社交网络、化学分子结构等等。
这类数据由于其不具备平移不变性,不能利用卷积核去提取相同的结构信息,所以卷积神经网络对于这类数据无能为力。所以衍生出了处理这类数据的网络,即图神经网络。
非欧几里德结构的样本总得来说有两大类型,分别是图(Graph)数据和流形数据。

图2. 图结构数据是典型的非欧几里德结构数据

图3.流形数据也是典型的非欧几里德结构数据
这两类数据有个特点就是,排列不整齐,比较的随意。具体体现在:对于数据中的某个点,难以定义出其邻居节点出来,或者是不同节点的邻居节点的数量是不同的,因此这类型的数据不能看成是在欧几里德样本空间中的一个样本点了。
欧式数据: 1.点空间有序 2.邻接点唯一确定
非欧式数据:1.点空间无序 2.邻接点数不定
9624

被折叠的 条评论
为什么被折叠?



