阿里云手机号停机了怎么办?阿里云手机号收不到验证码,阿里云子账号建立教程

1.https://ram.console.aliyun.com/overview进入子账号创建页面

2.点击创建用户,如图所示,创建子用户如123456
在这里插入图片描述

3,给子用户设置权限,如图(添加管理员所有权限)
在这里插入图片描述

4,如果以后需要使用AK,SK功能,须在手机号可接收验证码前设置ak,sk

之后子账号就拥有了和主账号一样的功能权限,再也不担心阿里云收不到验证码无法登录的问题了

当然如果是你自己认证实名的阿里云账号,可通过人工申请找回更换手机号,如图所示
在这里插入图片描述

阅读终点,创作起航,您可以撰写心得或摘录文章要点写篇博文。去创作
  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论
此处提供一种可能的实现方式,需要根据具体情况进行调整和修改。 首先,可以通过MVDnet输出的检测结果得到图像平面上的二维矩形框,以及对应的物体类别和置信度。假设这些信息已经保存在`detections`列表中,其中每个元素都是一个字典,包含以下键值: - `'bbox'`: 二维矩形框,格式为`(xmin, ymin, xmax, ymax)` - `'cls'`: 物体类别,一个整数 - `'score'`: 置信度,一个浮点数 接下来,需要使用原始数据中的点云信息,对每个检测结果进行高度拟合。假设点云的数据已经保存在名为`point_cloud`的变量中,格式为`(N, 3)`,其中`N`是点云中点的数量。此外,假设点云数据已经进行了预处理,包括去除离群点、采样等操作。 对于每个检测结果,可以首先将其二维矩形框在点云中对应的区域内提取出来,得到一个集的点云数据。具体地,可以按照以下步骤进行: 1. 将二维矩形框的坐标转换为点云坐标系下的坐标,即将像素坐标`(x, y)`转换为点云坐标`(X, Y, Z)`。这里可以使用深度图像将二者进行对齐,具体方法可以参考Open3D等库的实现。 2. 根据转换后的坐标,在点云数据中找到距离最近的若干个点,可以使用kd-tree等数据结构实现。 3. 将找到的点作为该检测结果的点云集,用于后续高度拟合。 得到点云集后,可以使用曲面拟合等方法对该集进行高度拟合,得到一个拟合平面或曲面,表示该物体的高度信息。具体实现可以使用Open3D等库中提供的拟合函数,如`open3d.geometry.TriangleMesh.create_from_point_cloud_alpha_shape`等。 最后,将高度信息与二维矩形框结合起来,得到一个三维矩形框。具体地,可以将拟合得到的平面或曲面与二维矩形框的四个角点相交,得到四个顶点的三维坐标,然后用这些坐标构建一个三维矩形框。具体实现可以参考以下代码: ```python import numpy as np import open3d as o3d # 定义点云数据和检测结果 point_cloud = ... # 点云数据,格式为(N, 3) detections = [...] # 检测结果,每个元素是一个字典,包含bbox、cls和score等键值 # 定义拟合参数 alpha = 0.04 # alpha-shape参数 n_neighbors = 20 # kd-tree中的最近邻数 n_fitting_points = 1000 # 用于拟合的点的数量 # 创建kd-tree pcd = o3d.geometry.PointCloud() pcd.points = o3d.utility.Vector3dVector(point_cloud) tree = o3d.geometry.KDTreeFlann(pcd) # 循环处理每个检测结果 for detection in detections: # 获取二维矩形框 bbox = detection['bbox'] xmin, ymin, xmax, ymax = bbox # 将矩形框坐标转换为点云坐标系下的坐标 pixel_coords = np.array([[xmin, ymin], [xmax, ymin], [xmax, ymax], [xmin, ymax]]) depth = ... # 对应的深度图像 point_coords = ... # 将像素坐标转换为点云坐标 # 在点云数据中找到对应的点 indices, _ = tree.search_knn_vector_3d(point_coords, n_neighbors) subset = point_cloud[indices, :] # 进行曲面拟合 pcd = o3d.geometry.PointCloud() pcd.points = o3d.utility.Vector3dVector(subset) mesh, _ = o3d.geometry.TriangleMesh.create_from_point_cloud_alpha_shape( pcd, alpha, n_fitting_points) # 获取矩形框的高度信息 height = ... # 将拟合的曲面转换为高度信息 # 构建三维矩形框 x1, y1, x2, y2 = bbox z = height corners_3d = np.array([ [x1, y1, z], [x2, y1, z], [x2, y2, z], [x1, y2, z] ]) # 四个顶点的坐标,格式为(N, 3) box_3d = ... # 根据四个顶点的坐标构建三维矩形框 ``` 以上代码仅供参考,具体实现需要根据具体情况进行修改和调整。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿里云帐号

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值