力扣-1508 子数组和排序后的区间和

@[TOC]力扣-1508 子数组和排序后的区间和

题目描述

给你一个数组 nums ,它包含 n 个正整数。你需要计算所有非空连续子数组的和,并将它们按升序排序,得到一个新的包含 n * (n + 1) / 2 个数字的数组。

请你返回在新数组中下标为 left 到 right (下标从 1 开始)的所有数字和(包括左右端点)。由于答案可能很大,请你将它对 10^9 + 7 取模后返回。

示例

输入:nums = [1,2,3,4], n = 4, left = 1, right = 5
输出:13
解释:所有的子数组和为 1, 3, 6, 10, 2, 5, 9, 3, 7, 4 。将它们升序排序后,我们得到新的数组 [1, 2, 3, 3, 4, 5, 6, 7, 9, 10] 。下标从 le = 1 到 ri = 5 的和为 1 + 2 + 3 + 3 + 4 = 13 。

这里我解释一下,为什么所有的子数组和为什么是1, 3, 6, 10, 2, 5, 9, 3, 7, 4,
题目说明了。需要计算的是非空连续子数组的和,因此
前四个,1,3,6,10为数组{1},{1,2},{1,2,3},{1,2,3,4}
接着三个,2,5,9为数组{2},{2,3},{2,3,4}
接着后面两个,3,7为数组{3},{3,4}
最后一个就是它本身{4}

源代码

class Solution {
public:
    int rangeSum(vector<int>& nums, int n, int left, int right) {
        if(nums.empty()) return 0;   //如果传递的容器数组为空,则直接返回0
        const int MODULO = 1000000007;
        vector<int> num;   //定义一个新的容器
        int count=0;
        for(int i=0;i<n;i++) //上面的文字解释
        {
            count=0;
            for(int k=i;k<n;k++)
            {
                count+=nums[k];
                num.push_back(count);
            }
        }
        sort(num.begin(),num.end());   //将num按升序排序
        int sum=0;
        for(int i=left-1;i<right;i++) sum=(sum+num[i])%MODULO;
        //注意这里一定是sum=(sum+num[i])%MODULO,不能写成sum+=num[i]%MODULO,会造成溢出的情况
        return sum;
    }
};

  • 3
    点赞
  • 0
    收藏
  • 打赏
    打赏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:技术黑板 设计师:CSDN官方博客 返回首页
评论 3

打赏作者

hero_th

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值