YOLO的网络结构(一)
其网络结构能分为三部分。
第一部分:图片的输入
第二部分:基础网络。作者原文使用的是 Darkjnet-53 without FC layer。
第三部分:yolo v3的三个分支。y1(13x13x255),y2(26x26x255),y3(52x52x255)。
Y1从上面结点获取。是最高层的,最抽象的特征。适合比较大的目标检测;
Y2是在Y1的基础上做一个上采样+一个低层的一个特征进行连接(concat)。
适合中等的目标检测;
Y3是在Y2的基础上做一个上采样+一个更低层的一个特征进行连接(concat)。适合小 目标的检测。
三个尺度的输出皆是奇数,使得网格会有个中心位置。
通道数255:{[80(coco数据集共有80类)+[X+Y+W+H+Confiderce]}×3(anchor) = 255

CBL为卷积块:由conv2d,Batch Normalization,Leaky relu 这三个网络层组成。
Res为残差块:包含两个卷积块和一个add层,add层只是将相同维度的张量进行相加。
ResX为多个残差块,X代表残差块的个数。
上采样;将特征图的宽和高变成原来的两倍,通道数不变。
Concat张量拼接:相同宽和
本文介绍了YOLO的网络结构,分为图片输入、Darknet-53基础网络和三个检测分支。Y1、Y2、Y3分别针对不同大小的目标检测,通过上采样和特征拼接实现。通道数255对应类别数、坐标和置信度。网络结构中包含卷积块、残差块和上采样操作。此外,文章还讲解了卷积层的工作原理、步长和填充,以及池化层和全连接层的作用。
最低0.47元/天 解锁文章
3369

被折叠的 条评论
为什么被折叠?



