[图像处理学习笔记Opencv]双边滤波

本文详细介绍了双边滤波的工作原理,包括空域高斯分布和值域高斯分布的作用,并提供了使用OpenCV实现双边滤波的C++代码示例,重点讲解了K核和V核的构造方法。同时,提到了Opencv库函数bilateralFilter中两个sigma参数的含义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


一、原理

双边滤波有两个功能:滤波和保留边界。使用两个核处理图像,记作K核、v核。
其中:K核满足空域的高斯分布(滤波),V核满足值域的高斯分布(保留边界)。
空域的高斯分布:离中心像素点越近,权值越大,否则越小。
在这里插入图片描述
其中u,v为核的中心坐标。
值域的高斯分布:与中心像素点差值越大,权值越小,否则越大。
在这里插入图片描述
其中f(u,v)为中心点像素值。
那么双边滤波的核为K*V。


二、Opencv代码实现

1.K核

代码如下(示例):

#include "opencv2/core.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/highgui.hpp"
#include <iostream>
#include<cmath>
using namespace cv;
using namespace std;


Mat get_K(Size size, float kesi,int type) {
	Mat filter = Mat::zeros(size, type);
	int center = filter.rows / 2;
	float sum=0.0;
	for (int i = 0; i < filter.rows; i++)
	{
		for (int j = 0; j < filter.cols; j++)
		{
			filter.at<float>(i, j) = std::exp(-0.5*pow((sqrt((i - center)* (i - center) + (j - center) * (j - center)) / kesi),2.0));
			sum += filter.at<float>(i, j);
		}
	}
	filter /= sum;
	return filter;
}

2.V核

代码如下(示例):

Mat get_val(const Mat &srcpart, Size size, float kesi, int type) {
	Mat filter = Mat::zeros(size, type);
	float sum = 0.0;
	int center = filter.rows / 2;
	for (int i = 0; i < filter.rows; i++)
	{
		for (int j = 0; j < filter.cols; j++)
		{
			filter.at<float>(i, j) = std::exp(-0.5 * pow(srcpart.at<uchar>(i, j) - srcpart.at<uchar>(center, center) / kesi, 2));
			sum += filter.at<float>(i, j);
		}
	}
	filter /= sum;
	return filter;
}

3.Opencv 库函数bilateralFilter

可以发现,有两个sigma,对应值域与空域高斯分布的方差。
在这里插入图片描述


总结

双边滤波由空域核值域的高斯分布核构成。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值