Yarn理论第一天

资源管理调度 Yarn

Hadoop组成

Hadoop HDFS:一个高可靠、高吞吐量的分布式文件系统,对海量数据的存储。

MapReduce:一个分布式的资源调度和离线并行计算框架。

Yarn:基于HDFS,用于作业调度和集群资源管理的框架。
在这里插入图片描述

1.Yarn通俗介绍

Apache Hadoop YARN (Yet Another
Resource Negotiator,另一种资源协调者)是一种新的 Hadoop 资源管理器,它是一个 通用资源管理系统和调度平台 ,可为上层应用提供统一的资源管理和调度。

支持多个数据处理框架(MapReduce Spark Storm等)。具有资源利用率高、运行成本底、数据共享等特点。

在这里插入图片描述

它的引入为集群在利用率、资源统一管理和数据共享等方面带来了巨大好处。

可以把yarn理解为相当于一个分布式的操作系统平台,而mapreduce等运算程序则相当于运行于操作系统之上的应用程序,Yarn为这些程序提供运算所需的资源(内存、cpu)。

l yarn并不清楚用户提交的程序的运行机制

l yarn只提供运算资源的调度(用户程序向yarn申请资源,yarn就负责分配资源)

l yarn中的主管角色叫ResourceManager

l yarn中具体提供运算资源的角色叫NodeManager

l yarn与运行的用户程序完全解耦,意味着yarn上可以运行各种类型的分布式运算程序,比如mapreduce、storm,spark,tez ……

l spark、storm等运算框架都可以整合在yarn上运行,只要他们各自的框架中有符合yarn规范的资源请求机制即可

l yarn成为一个通用的资源调度平台.企业中以前存在的各种运算集群都可以整合在一个物理集群上,提高资源利用率,方便数据共享

2.Yarn基本架构

在这里插入图片描述

YARN是一个资源管理、任务调度的框架,主要包含三大模块:ResourceManager(RM)、NodeManager(NM)、ApplicationMaster(AM)。

ResourceManager负责所有资源的监控、分配和管理,一个集群只有一个;

NodeManager负责每一个节点的维护,一个集群有多个。

ApplicationMaster负责每一个具体应用程序的调度和协调,一个集群有多个;

对于所有的applications,RM拥有绝对的控制权和对资源的分配权。而每个AM则会和RM协商资源,同时和NodeManager通信来执行和监控task。

3.Yarn三大组件介绍

3.1 ResourceManager

ResourceManager负责整个集群的资源管理和分配,是一个全局的资源管理系统。

NodeManager以心跳的方式向ResourceManager汇报资源使用情况(目前主要是CPU和内存的使用情况)。RM只接受NM的资源回报信息,对于具体的资源处理则交给NM自己处理。

YARN Scheduler根据application的请求为其分配资源,不负责application job的监控、追踪、运行状态反馈、启动等工作。

3.2 ApplicationMaster

用户提交的每个应用程序均包含一个ApplicationMaster,它可以运行在ResourceManager以外的机器上。

负责与RM调度器协商以获取资源(用Container表示)。

将得到的任务进一步分配给内部的任务(资源的二次分配)。

与NM通信以启动/停止任务。

监控所有任务运行状态,并在任务运行失败时重新为任务申请资源以重启任务。

当前YARN自带了两个ApplicationMaster实现,一个是用于演示AM编写方法的实例程序DistributedShell,它可以申请一定数目的Container以并行运行一个Shell命令或者Shell脚本;另一个是运行MapReduce应用程序的AM—MRAppMaster。

注:RM只负责监控AM,并在AM运行失败时候启动它。RM不负责AM内部任务的容错,任务的容错由AM完成。

3.3 NodeManager

NodeManager是每个节点上的资源和任务管理器,它是管理这台机器的代理,负责该节点程序的运行,以及该节点资源的管理和监控。YARN集群每个节点都运行一个NodeManager。

NodeManager定时向ResourceManager汇报本节点资源(CPU、内存)的使用情况和Container的运行状态。当ResourceManager宕机时NodeManager自动连接RM备用节点。

NodeManager接收并处理来自ApplicationMaster的Container启动、停止等各种请求。

4. Yarn运行流程

在这里插入图片描述
1. client向RM提交应用程序,其中包括启动该应用的ApplicationMaster的必须信息,例如ApplicationMaster程序、启动ApplicationMaster的命令、用户程序等。

2. ResourceManager启动一个container用于运行ApplicationMaster

3.动中的ApplicationMaster向ResourceManager注册自己,启动成功后与RM保持心跳。

4.ApplicationMaster向ResourceManager发送请求,申请相应数目的container

5.请成功的container,由ApplicationMaster进行初始化。container的启动信息初始化后,AM与对应的NodeManager通信,要求NM启动container

6.NM启动启动container

7.container运行期间,ApplicationMaster对container进行监控。container通过RPC协议向对应的AM汇报自己的进度和状态等信息

8.应用运行结束后,ApplicationMaster向ResourceManager注销自己,并允许属于它的container被收回

详细流程图:
在这里插入图片描述

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页