network structure:

- 网络提取出Ia和Ib的feature map,并预测出两张feature map的mask(和feature map同尺寸,mask的值代表该pixel为内点的概率),将feature map 与 mask相乘得到weighted feature map。
- 将两张weighted feature map拼接起来得到H × W × 2C的concat_feature_map送入一个resnet预测得到4个 2D offset vectors,即可求出对应的homography
training:

- 将Ia用预测得到的Hab warp(用STN)得到Ia’,将Ia’送入网络得到Ia’的feature map a’和Mask Ma’。
- loss设计:
loss 1:minimize Ia’的feature map 和Ib的feature map经过weighted后的L1距离

loss2:

This strategy avoids the trivial
all-zero solutions, and enables the network to learn a discriminative feature map.
loss3:

total loss:

2万+

被折叠的 条评论
为什么被折叠?



