Content-Aware Unsupervised Deep Homography Estimation

network structure:
在这里插入图片描述

  1. 网络提取出Ia和Ib的feature map,并预测出两张feature map的mask(和feature map同尺寸,mask的值代表该pixel为内点的概率),将feature map 与 mask相乘得到weighted feature map。
  2. 将两张weighted feature map拼接起来得到H × W × 2C的concat_feature_map送入一个resnet预测得到4个 2D offset vectors,即可求出对应的homography

training:
在这里插入图片描述

  1. 将Ia用预测得到的Hab warp(用STN)得到Ia’,将Ia’送入网络得到Ia’的feature map a’和Mask Ma’。
  2. loss设计:
    loss 1:minimize Ia’的feature map 和Ib的feature map经过weighted后的L1距离
    在这里插入图片描述
    loss2:
    在这里插入图片描述
    This strategy avoids the trivial
    all-zero solutions, and enables the network to learn a discriminative feature map.

loss3:
在这里插入图片描述

total loss:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值