人工智能系统以科学家无法做到的方式看到所有的数据以发现新的结果

  我们已经在这方面看到了一些令人鼓舞的早期进展例如,研究人员已经把深度学用于医学诊断开发出各种视网膜病变的分类算法其精度已经与人类专家相当
  另一个例子是一个经过训练的人工智能算法对良性和恶性肤病的分类精度已经达到经专业认证的皮肤病医生的水准在急诊室里深度学习现在可以帮助我们判定一个病人的CT扫描是否显示他有中风的迹象新的人工智能算法不仅使识别这些信号的精度以媲美医学专家更为重要的是它的速度是人类的150倍
  当然,还有让CASP与会人员充满敬畏的AlphaFold深度学习系统在CASP竞赛中每个参赛队伍拿到的是90个蛋白质的氨基酸的线性序列这些蛋白质的3D形状已知但是没有公开发表参赛队伍要计算出蛋白质是如何折叠的通过筛选过去已知的蛋白质折叠模式AlphaFold的平均预测精度超过了所有其他97支参赛队伍。
  这些人工智能技术的成功运用都具备了深度学习的两个基本要素大量的训练数据和清晰的分类方式例如,为了检测皮肤癌研究人员给算法输入数百万的皮肤病变的图像并告知算法每一幅图像对应的是良性还是恶性病变由于算法与皮肤病专家所受的训练是不一样的算法也许看不到皮肤病专家所看到的一些模式,但这也意味着,人工智能系统也可能看到一些皮肤病专家所看不到的模式。
  哪些科学领域能从这些进展中收益最多呢?我们还是再看看深度学习的两个基本要素:大量的数据以及可用于标记数据的清晰边界。这意味着那些最能从人工智能技术直接受益的科学领域需要足够的窄,从而能够有清晰的数据标记策略。这些领域还要足够的深,使得人工智能系统以科学家无法做到的方式看到所有的数据以发现新的结果。
  最为重要的是,尽管机器正在快速改进精度和效率,但科学最为激动人心的未来既不属于人类也不属于机器,而是有赖于两者之间的战略伙伴关系。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值