2022,这些技术将是下半场竞争胜负的关键

2022年被视为自动驾驶行业关键一年,数据智能、Transformer与CNN融合、大算力计算平台及激光雷达技术将引领下半场竞争。NLP领域,基于提示的微调技术兴起,但面临标注数据获取难题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2022,这些技术将是下半场竞争胜负的关键 

根据张凯的预判“2022 年将是自动驾驶行业发展最为关键的一年乘用车辅助驾驶领域的竞争将会正式进入下半场而下半场竞争的场景将会是城市开放场景其他场景的自动驾驶也将正式进入商业化元年

张凯认为,2022 年多项自动驾驶技术值得关注。

(1)数据智能将成为自动驾驶量产决胜的关键数据智能体系是自动驾驶商业化环的关键所在,搭建高效低成本的数据智能体系有助于推自动驾驶系统不断迭代前行

(2)Transformer 与 CNN 技术深度融合将会成为自动驾驶算法整合的粘合剂Transformer 技术帮助自动驾驶感知系统理解环境语义更深刻与 CNN 技术深度融合能解决 AI 大模量产部署的难题,这是自动驾驶行业半场竞争的关键技术。

(3)大算力计算平台将在 2022 年正式量产落地Transformer 技术与 ONESTAGE CNN 术都需要大算力计算平台做支撑

(4)随着自动驾驶系统的量产和规模化激光雷达与机器视觉组成的 AI 感知技术将与大算力计算平台深度融合这将大幅提升自动驾驶感知认知模块的运行效率。

NLP,黄金时代持续? 

这几年,NLP 处于快速发展阶段去年,多位 NLP 专家评判NLP 迎来了大爆发的黄金时代。那么今年,NLP 的发展情况如何?

基于提示的微调技术迅速流行 

作业帮产研中心蒋宏飞博士告诉 InfoQ,今年基于提示的微调 (prompt-based tuning)的技术迅速流行起来,这是一种人类知识和大模型较高效的结合模式。该技术是今年较值得关注的新进展。

“今年 NLP 在基础模型方面没有大的突破。预训练模型方面,今年涌现了很多很大的模型,但整体上同质化也较严重,对于工业界实践效果来讲,往往按照‘奥卡姆剃刀’原则,倾向于使用最适当的如 Bert 往往就够了”蒋宏飞表示。

现阶段,NLP 技术在发展过程中还存在不少技术挑战,其中之一便是很难获取到大量高质量的标注数据。深度学习依赖大规模标注数据,对于语音识别、图像处理等感知类任务,标注数据相对容易,但 NLP 往往是认识类任务,人的理解都有主观性,且任务和领域众多,导致大规模语料标注的时间成本和人力成本都很大。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值