许多企业高管如今意识到,其业务如果要在未来获得成功可能取决于有效实施人工智能战略的能力,以跟上人工智能驱动的快速数字化步伐。
很多企业希望利用人工智能的巨大优势,其中包括提供数据驱动的洞察力、提高产品与市场的匹配度、降低运营成本以及提高客户满意度的能力。然而,很多人没有意识到企业真正需要什么才能为采用人工智能技术做好准备。文化和技术转变可能具有挑战性,但其回报可能意味着会有意外收获。
问题是如何以最佳方式实施人工智能。以下步骤可以帮助企业克服成功采用人工智能的障碍。
1.确定希望通过人工智能解决的业务挑战
人工智能可以做很多事情,而企业负责实施特定人工智能解决方案的团队需要首先从挑战和机遇两个方面审视业务的驱动因素,以及人工智能如何应用于这些驱动因素。这种方法使团队能够根据业务案例的价值衡量使人工智能工作所需的时间和投资。
此时,企业开发人工智能的团队还应密切关注内部可用的数据以及数据检索的难易程度。如果有可靠的人工智能用例要实施,但没有必要的数据集来支持该计划,那么将无法推进人工智能实施。
需要记住的是,遗留和分散的IT系统使访问信息变得困难,人工智能开发团队可能需要确定企业数据收集方面的差距。对其数据策略的评估将涉及企业的法律委员会、IT部门以及需要准备并提供数据以进行分析的其他部门。
2.优先考虑人工智能用例来执行试点
一旦企业的团队列出了采用人工智能的挑战和机遇列表,就可以对顶级人工智能用例进行优先排序,并为每个用例制定详细的采用路线图。这个过程包括评估他们的技术可行性和业务投资回报率。此时,IT团队将开始更详细地探索案例的复杂性和成本。
人工智能实施团队应该从一个有意义但易于完成的用例开始执行试点。这将使企业从一开始就看到人工智能的早期胜利,从而使团队更容易获得领导层的支持,以便将来在企业中扩展和扩展他们的人工智能工作。
3.为企业采用人工智能奠定基础
人工智能不仅仅是拥有正确的数据或选择正确的算法来推进,而且是一个强大的机器学习基础设施,它可以承载企业设计、测试和构建新的人工智能应用程序所需的一切,并有效地支持现有的人工智能解决方案生产。
在技??术方面,此类基础构建在云平台中(例如AWS、微软Azure、谷歌云平台等),或作为混合系统,其中基础设施的特定部分同时托管在内部部署设施和云平台中。它们应具备填补现有数据和机器学习管道中的任何空白所需的所有技术、选定的机器学习工具设置和配置模板,以使企业能够释放机器学习工程的全部潜力。
建立强大的人工智能基础还涉及投资人工智能文化。企业应准该备好在各个部门主动创建人工智能用户群,以促进整个企业范围内的知识共享和人工智能传播过程。
企业需要明确通过人工智能解决的业务挑战,优先考虑人工智能用例进行试点,并建立强大的人工智能基础设施来支持实施。初期应选择有意义且易于完成的项目,以展示早期成果并获取高层支持。此外,培养人工智能文化也至关重要,鼓励各部门参与并分享知识。

被折叠的 条评论
为什么被折叠?



