神经网路概述CNN
卷积神经网络构成:(1)卷积层1、功能:提取特征2、输入输出:输入的是图片、输出是特征图卷积核放在神经网络里,就代表对应的权重(weight),,就相当于函数参数。卷积核和图像进行点乘, 就代表卷积核里的权重单独对相应位置的像素进行作用。虽说我们称为卷积,实际上是位置一一对应的点乘,不是真正意义的卷积。比如图像位置(1,1)乘以卷积核位置(1,1),然后将各自点乘结果相加。这里仅仅描述了一次卷积过程。我们知道通常图像都是有R G B 三个维度<或者n个维度>组成的,每个维度都有自己的







