英国天文学家爱丁顿很喜欢骑车。据说他为了炫耀自己的骑车功力,还定义了一个“爱丁顿数” E ,即满足有 E 天骑车超过 E 英里的最大整数 E。据说爱丁顿自己的 E 等于87。
现给定某人 N 天的骑车距离,请你算出对应的爱丁顿数 E(≤N)。
输入格式:
输入第一行给出一个正整数 N (≤105),即连续骑车的天数;第二行给出 N 个非负整数,代表每天的骑车距离。
输出格式:
在一行中给出 N 天的爱丁顿数。
输入样例:
10
6 7 6 9 3 10 8 2 7 8
输出样例:
6
题目解析:
本题其实仔细想想还是比较简单的,不过有个小坑:“满足有 E 天骑车超过 E 英里的最大整数 E”,这里注意天数和英里数不能相等,只能是 大于 关系。
那么可以使用贪心思想,首先将num[]这组数据按照从大到小的顺序排列,然后记录对于每个num[i],英里数大于num[i]的元素个数day[i]即可。记录完毕之后再遍历一次num[]和day[],选择day[i]>num[i]的最新元素即可。
也可以使用动态规划思想,使用aiDingDun[]保存第i个元素及其之前的爱丁顿数,使用index标记天数,那么有递推式
aiDingDun[i]=max(min(num[i]-1,index),aiDingDun[i-1]);
这里使用num[i]-1是因为英里数和天数不能相等,比如输入的是:
5
5 5 5 5 5
正确的输出应该是4,因为本题说了要 超过英里数,超过5英里的有0天,超过4英里的有5天。
代码如下:
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<ctype.h>
#include<stdlib.h>
int cmp(const void *a,const void *b){
int *p1=(int *)a;
int *p2=(int *)b;
return (*p2)-(*p1);
}
int max(int a,int b){
return a>b?a:b;
}
int min(int a,int b){
return a>b?b:a;
}
int main(){
int n,m,i,j;
scanf("%d",&n);
int *num=calloc(n+1,sizeof(int));
int *aiDingDun=calloc(n+1,sizeof(int));
for(i=0;i<n;i++)
scanf("%d",num+i);
int index=1;
qsort(num,n,sizeof(int),cmp);
//动态规划,mile表示i之前的爱丁顿数
aiDingDun[0]=min(1,num[0]-1);
for(i=1;i<n;i++){
index++;
aiDingDun[i]=max(min(num[i]-1,index),aiDingDun[i-1]);
}
printf("%d",aiDingDun[n-1]);
return 0;
}
测试点参考(输入和正确输出):
输入1
5
9 8 7 6 6
5
输入2
4
9 8 7 1
3
输入3
4
1 0 0 0
0
输入4
5
0 0 0 0 0
0
输入5
1
1
0
Python代码展示了如何使用贪心和动态规划方法解决计算爱丁顿数的问题,适用于编程竞赛或算法学习者理解数据处理技巧。
4924

被折叠的 条评论
为什么被折叠?



