未经同意,禁止转载
本文为本人在校学习笔记,若有疑问或谬误,欢迎探讨、指出。
【概率论】随机变量函数的分布
一维
离散型
-
确定变换后的变量的取值情况,分别求概率
-
连续型随机变量的函数 → \to → 离散型
连续型
-
一般步骤
Step1.
根据X的分布区间(或其它信息)确定Y的分布区间(取值范围)
Step2.
用 Y ( X ) Y(X) Y(X) 替换 $Y $ ,通过不等式等价变换出关于关于X的分布函数(或其形式)
注意:Y变换到X时,有可能从连续的Y区间变成若干段X区间(如三角函数 Y = sin X Y = \sin X Y=sinX 等),可以画图讨论
Step3.
分布函数求导得到概率密度
F Y ( y ) = P { Y ≤ y } = P { g ( X ) ≤ y } = P { X ≤ h ( y ) } = F X ( h ( y ) ) f Y ( y ) = F Y ′ ( y ) = F X ′ ( h ( y ) ) ⋅ h ′ ( y ) \begin{aligned} & F_Y(y) = P\{Y \le y\} = P\{g(X) \le y\} = P\{X \le h(y)\} = F_X(h(y)) \\ & f_Y(y) = F'_Y(y) = F'_X(h(y)) \cdot h'(y) \end{aligned} FY(y)=P{Y≤y}=P{g(X)≤y}=P{X≤h(y)}=FX(h(y))fY(y)=FY′(y)=FX′(h(y))⋅h′(y)
- x ∼ N ( 0 , 1 ) x \sim N(0,1) x∼N(0,1) 用 Y = X 2 Y=X^2 Y=X2 替换,可以得到自由度为1 的 χ 2 \chi^2 χ2分布
-
已知 X X X 概率密度 f ( x ) , − ∞ < x < ∞ f(x),-\infty<x<\infty f(x),−∞<x<∞。
若函数 g ( x ) g(x) g(x) 处处可导且严格单调(导数恒大于或小于0),则 Y = g ( X ) Y=g(X) Y=g(X) 是连续型随机变量,其概率密度为:
f Y ( y ) = { f X [ h ( y ) ] ⋅ ∣ h ′ ( y ) ∣ , α < y < β 0 , otherwise f_Y(y) = \begin{cases} f_X[h(y)]\cdot |h'(y)|, & \alpha<y<\beta \\ 0, & \text{otherwise} \\ \end{cases} \\ fY(y)={fX[h(y)]⋅∣h′(y)∣,0,α<y<βotherwise
where
α = m i n { g ( − ∞ ) , g ( ∞ ) } , β = m a x { g ( − ∞ ) , g ( ∞ ) } , h ( x ) = g − 1 ( x ) \alpha = min\{g(-\infty), g(\infty)\}, \\ \beta = max\{g(-\infty), g(\infty)\}, \\ h(x) = g^{-1}(x) α=min{g(−∞),g(∞)},β=max{g(−∞),g(∞)},h(x)=g−1(x)
若 f ( x ) f(x) f(x) 在半无限区间 / 有界区间 [ a , b ] [a,b] [a,b] 以外等于0,只需要假设在 [ a , b ] [a,b] [a,b] 上严格单调,则有
α = min a ≤ x ≤ b g ( x ) , β = max a ≤ x ≤ b g ( x ) , \alpha = \min_{a \le x \le b}g(x), \quad \beta = \max_{a \le x \le b}g(x), α=a≤x≤bming(x),β=a≤x≤bmaxg(x),NOTICE: 用定理,明确区间,说明满足定理条件(严格单调)
如果在连续区间内函数是==分段单调,则不能直接对整个区间用定理,需要分段计算==,或者通过转换为同一个区间(如函数有对称性)内后计算/用定理。
二维
求替换(如 Z = a X + b Y Z = aX + bY Z=aX+bY )后变量的 分布函数/密度 基本步骤:
Step1. 求联合分布
判断X、Y的独立性,以及替换模式(是否为X+Y、XY、X/Y等)。写出联合密度函数 f ( x , y ) f(x,y) f(x,y)。
(当相互独立的特殊类型时,用卷积公式或其它结论可以直接计算新变量的概率密度)
Step2. 确定积分域
把新变量 Z Z Z 看作一个常数,在 x O y xOy xOy 平面上确定函数曲线(如 Y = − a b X + 1 b Z Y = -\frac{a}{b}X + \frac{1}{b}Z Y=−baX+b1Z )与联合分布本身密度不为零的区域边界,构成积分域。
Step3. 积出分布函数
计算分布函数。
Step4. 求导计算密度
分布函数求导得到新变量的概率密度。
Z = X+Y 分布
-
( X , Y ) (X, Y) (X,Y) 是二维连续型随机变量,其概率密度为 f ( x , y ) f(x,y) f(x,y), 则 Z = X + Y Z = X+Y Z=X+Y 有
f X + Y ( z ) = ∫ − ∞ ∞ f ( z − y , y ) d y f X + Y ( z ) = ∫ − ∞ ∞ f ( x , z − x ) d x f_{X+Y}(z) = \int_{-\infty}^{\infty}f(z-y, y)\mathrm{d}y \\ f_{X+Y}(z) = \int_{-\infty}^{\infty}f(x, z-x)\mathrm{d}x fX+Y(z)=∫−∞∞f(z−y,y)dyfX+Y(z)=∫−∞∞f(x,z−x)dx当 X Y XY XY 相互独立时,有卷积公式
f X ∗ f Y = f X + Y ( z ) = ∫ − ∞ ∞ f X ( z − y ) f Y ( y ) d y = ∫ − ∞ ∞ f X ( x ) f Y ( z − x ) d x f_X*f_Y = f_{X+Y}(z) = \int_{-\infty}^{\infty}f_X(z-y)f_Y(y)\mathrm{d}y = \int_{-\infty}^{\infty}f_X(x)f_Y(z-x)\mathrm{d}x fX∗fY=fX+Y(z)=∫−∞∞fX(z−y)fY(y)dy=∫−∞∞fX(x)fY(z−x)dx -
有限个相互独立的正态随机变量的线性组合仍然服从正态分布。
相互独立,相互独立,相互独立。
X ∼ ( μ i , σ i 2 ) , Z = ∑ X i ⇒ Z ∼ ( ∑ μ i , ∑ σ i 2 ) X \sim (\mu_i, \sigma_i^2),Z = \sum X_i \\ \Rightarrow Z \sim (\sum \mu_i, \sum \sigma_i^2) X∼(μi,σi2),Z=∑Xi⇒Z∼(∑μi,∑σi2)
(推导过程 P76)
Z = X/Y 和 Z = XY 分布
若
(
X
,
Y
)
∼
f
(
x
,
y
)
(X, Y) \sim f(x, y)
(X,Y)∼f(x,y),则有
f
Y
/
X
(
z
)
=
∫
−
∞
∞
∣
x
∣
f
(
x
,
x
z
)
d
x
f
X
Y
(
z
)
=
∫
−
∞
∞
1
∣
x
∣
f
(
x
,
z
x
)
d
x
f_{Y/X}(z) = \int_{-\infty}^{\infty}|x|f(x, xz)\mathrm{d}x \\ f_{XY}(z) = \int_{-\infty}^{\infty}\frac{1}{|x|}f(x, \frac{z}{x})\mathrm{d}x
fY/X(z)=∫−∞∞∣x∣f(x,xz)dxfXY(z)=∫−∞∞∣x∣1f(x,xz)dx
若相互独立,则同样有
f
Y
/
X
(
z
)
=
∫
−
∞
∞
∣
x
∣
f
X
(
x
)
f
Y
(
x
z
)
d
x
f
X
Y
(
z
)
=
∫
−
∞
∞
1
∣
x
∣
f
X
(
x
)
f
Y
(
z
x
)
d
x
f_{Y/X}(z) = \int_{-\infty}^{\infty}|x|f_X(x)f_Y(xz)\mathrm{d}x \\ f_{XY}(z) = \int_{-\infty}^{\infty}\frac{1}{|x|}f_X(x)f_Y(\frac{z}{x})\mathrm{d}x
fY/X(z)=∫−∞∞∣x∣fX(x)fY(xz)dxfXY(z)=∫−∞∞∣x∣1fX(x)fY(xz)dx
M = max{X,Y} 和 N = min{X,Y} 分布
相互独立的随机变量 X , Y X, Y X,Y 分布函数分别为 F X ( x ) , F Y ( y ) F_X(x), F_Y(y) FX(x),FY(y) ,则
-
M = max { X , Y } M = \max\{X, Y\} M=max{X,Y} 的分布函数
F m a x ( z ) = P { M ≤ z } = P { X ≤ z , Y ≤ z } = P { X ≤ z } P { Y ≤ z } F_{max}(z) = P\{M \le z\} = P\{X\le z, Y\le z\} = P\{X\le z\} P\{Y\le z\} \\ Fmax(z)=P{M≤z}=P{X≤z,Y≤z}=P{X≤z}P{Y≤z}
⇒ F m a x ( z ) = F X ( z ) F Y ( z ) \Rightarrow F_{max}(z) = F_X(z)F_Y(z) ⇒Fmax(z)=FX(z)FY(z)
容易推广到 N = min { X 1 , X 2 , . . . , X n } N = \min\{X_1, X_2, ..., X_n\} N=min{X1,X2,...,Xn} 时的例子。
-
N = min { X , Y } N = \min\{X, Y\} N=min{X,Y} 的分布函数
F m i n ( z ) = P { N ≤ z } = 1 − P { N > z } = 1 − P { X > z , Y > z } F_{min}(z) = P\{N \le z\} = 1- P\{N > z\} = 1- P\{X > z, Y > z\} \\ Fmin(z)=P{N≤z}=1−P{N>z}=1−P{X>z,Y>z}⇒ F m i n ( z ) = 1 − [ 1 − F X ( z ) ] [ 1 − F Y ( z ) ] \Rightarrow F_{min}(z) = 1 - [1- F_X(z)][1 - F_Y(z)] ⇒Fmin(z)=1−[1−FX(z)][1−FY(z)]
容易推广到 N = min { X 1 , X 2 , . . . , X n } N = \min\{X_1, X_2, ..., X_n\} N=min{X1,X2,...,Xn} 时的例子。
特别的,当所有 X i X_i Xi 共享一个分布函数 F ( z ) F(z) F(z) 时,有
F m i n ( z ) = 1 − [ 1 − F ( z ) ] n F_{min}(z) = 1 - [1-F(z)]^n Fmin(z)=1−[1−F(z)]n
本文介绍了概率论中一维和二维随机变量函数的分布。对于一维随机变量,讨论了离散型和连续型随机变量经过变换后的分布,特别地,展示了如何将连续型随机变量转换为离散型,并给出了相关概率密度函数的求解步骤。在二维随机变量部分,重点讲解了Z=X+Y,Z=X/Y和Z=XY的分布,以及最大值M和最小值N的分布,包括独立随机变量的联合分布和分布函数的计算方法。
1万+

被折叠的 条评论
为什么被折叠?



