第十二章·电商大数据分析技术

12.1电商大数据分析需求与方法概述
现在已经有越来越多的行业和技术领域需求大数据分析系统,例如金融行业需要使用大数据系统结合 VaR(value at risk) 或者机器学习方案进行信贷风控,零售、餐饮行业需要大数据系统实现辅助销售决策,各种 IOT 场景需要大数据系统持续聚合和分析时序数据,各大科技公司需要建立大数据分析中台等等。抽象来看,支撑这些场景需求的分析系统,面临大致相同的技术挑战:1业务分析的数据范围横跨实时数据和历史数据,既需要低延迟的实时数据分析,也需要对 PB 级的历史数据进行探索性的数据分析;2可靠性和可扩展性问题,用户可能会存储海量的历史数据,同时数据规模有持续增长的趋势,需要引入分布式存储系统来满足可靠性和可扩展性需求,同时保证成本可控;3技术栈深,需要组合流式组件、存储系统、计算组件和;4可运维性要求高,复杂的大数据架构难以维护和管控;
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
以上都是关于电商大数据的图片 可见之强大
大数据处理对电子商务的作用:
1.大数据处理使电子商务的运营方式数据化
在大数据的影响下,电子商务领域很大程度上改变了传统的运营模式,现今更多哦地以数据方式为主导,贯穿于企业运营中的采购、营销以及财务等过程。大数据处理使电商企业数据化运营,使企业能够通过数据分析出顾客的需求,并以此对日后的经营提前做预测,从而使成本最小化、利润最大化。例如,亚马逊企业的分别为FDFC和FC的两种数据化运营模式,前者主要用于预测热销商品,而后者则用于小众商品的分析。
2.大数据处理使行业应用得以垂直整合
垂直整合可以理解为一种方法,以将公司的投入与产出的比例提高或者降低到某种程度。垂直整合与价值链模型紧密联系,可指公司、供应商与经销商三者之间价值链的整合程度,而当公司将另外二者的价值链整合至其价值链之中,即是完全垂直整合。电商领域对大数据处理的应用,使得企业自身对供应商与营销商的整合能力不断增强,其间的资源得到更好的共享,企业与用户的关系越来越近,也就获得了更多制胜的机会。
3.大数据处理使电子商务数据资产化
随着信息时代的发展与进步,数据或大数据作为信息时代的产物将占据越发重要的地位。有相关学者分析表示,数据化竞争将引领未来的商业竞争,而企业制胜的关键将以其对数据的掌握来衡量。企业将越发重视数据,将会有越来越多有关数据的业务相应而生,如对数据分析、可视化的业务和众包模式等。大数据在不久后的将来将发展成为一项产业,将为企业创造更多的利益。
大数据越来越影响人们的生活,久而久之成为家喻户晓,大数据对我们的生活产生了巨大的影响,
推荐更智能
大数据对于机器的训练非常有帮助,可以帮助机器更好的进行学习,了解人类的需求。比如,你经常在头条上进行阅读,会留下很多的浏览行为,头条就根据你的行为来判断你的兴趣,然后再把你喜欢的内容推荐给你。这就是所谓的智能推荐,它的基础就是大数据。如果没有足够的数据,是没办法进行精准推荐的。所以,如果你总能够在头条上看到你喜欢的内容,你真要感谢大数据。
出行更方便
当你出门的时候,你可能需要看一下地图的APP,因为你想知道现在道路的拥堵情况是怎样的。那么,这就跟大数据有关系了。地图的APP需要采集大量的交通数据,然后对道路的拥堵情况进行跟踪和预测,反馈给你一个比较好的路线。如果没有大数据的支持,你出门以后才发现路上很堵,这会浪费你很多的时间。
购物更方便
现在当你网上购物的时候,经常会出现类似于“猜你喜欢”这样的推荐。基于你买了A这样的产品,向你推荐关联的B产品。很多的时候,推荐的产品的确是你需要的,这样你就省得去搜索了。在大数据的帮助下,你一下子就买到你想要的商品了。这样一来,你节省了很多的购物时间,也提高了购物的效率。

<p> <span style="color:#333333;">项目一Spark离线处理</span> </p> <p> <span style="color:#333333;">本项目来源于企业级电商网站的数据统计分析平台,该平台以 Spark 框架为核心,对电商网站的日志进行离线和实时分析。 </span> </p> <br /><span style="color:#333333;">该数据分析平台对电商网站的各种用户行为(访问行为、购物行为、广告点击行为等)进行分析,根据平台统计出来的数据,辅助公司中的 PM(产品经理)、数据分析师以及管理人员分析现有产品的情况,并根据用户行为分析结果持续改进产品的设计,以及调整公司的战略和业务。最终达到用数据技术来帮助提升公司的业绩、营业额以及市场占有率的目标。 </span><br /><br /><p> <span style="color:#333333;">本项目使用了 Spark 技术生态栈中最常用的三个技术框架,Spark Core、Spark SQL 和 Spark Streaming,进行离线计算和实时计算业务模块的开发。实现了包括用户访问 session 分析、页面单跳转化率统计、热门商品离线统计、广告流量实时统计 4 个业务模块。通过合理的将实际业务模块进行技术整合与改造,该项目几乎完全涵盖了 Spark Core、Spark SQL 和 Spark Streaming 这三个技术框架中部分的功能点、知识点,学员对于 Spark 技术框架的理解将会在本项目中得到很的提高。 </span> </p> <p> <span style="color:#333333;"><br /></span> </p> <p> <span style="color:#333333;">项目二Spark实时处理</span> </p> <p> <span style="color:#333333;"><span style="color:#333333;">项目简介</span><br /><span style="color:#333333;">对于实时性要求高的应用,如用户即时详单查询,业务量监控等,需要应用实时处理架构</span><br /><br /><span style="color:#333333;">项目场景</span><br /><span style="color:#333333;">对于实时要求高的应用、有对数据进行实时展示和查询需求时</span><br /><br /><span style="color:#333333;">项目技术</span><br /><span style="color:#333333;">分别使用canal和kafka搭建各自针对业务数据库和用户行为数据的实时数据采集系统,使用SparkStreaming搭建高吞吐的数据实时处理模块,选用ES作为最终的实时数据处理结果的存储位置,并从中获取数据进行展示,进一步降低响应时间。</span><br /><span style="color:#333333;"> </span><br /></span> </p> <p> <span style="color:#333333;"><br /></span> </p>
参与评论 您还未登录,请先 登录 后发表或查看评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:深蓝海洋 设计师:CSDN官方博客 返回首页

打赏作者

她是人间十月天

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值