计算机组成原理学习 笔记二

数据的存储和排列

大端模式(便于人类阅读)和小端模式(便于机器处理)(字节从高到低、从低到高排列)

边界对齐

现代计算机通常按字节编址,即每个字节对应1个地址

通常也支持字、半字、字节寻址。

浪费存储空间来换取时间

 

浮点数的表示

阶码E(补码或移码表示的定点整数)尾数M(原码或补码表示的定点小数)

浮点数的真值:N=r^E×M(r一般为2)

E反映浮点数范围及小数点的实际位置;M反映浮点数精度

浮点数的尾数规格化

左规:当浮点数运算的结果为非规格化时要进行规格化处理,将尾数算数左移一位,阶码减1

右规:当浮点数运算的结果尾数出现溢出(双符号位为01或10)时,将尾数算数右移一位,阶码加1

原码尾数规格化(最高位一点是1):正数最大值为0.01…1;最小值为0.10…0.

负数最大值为1.10…0;最小值表示为1.11…1.

 

IEEE 754标准

移码:原码符号位取反

移码=真值+偏置值((2^n)-1)

 

数符(正负)+阶码E(用移码表示)+尾数M(用原码表示,1.M,1是隐含的))

偏置值为2^(n-1)-1

当阶码E全为0的时候,尾数M不全为0时,表示非规格化小数 隐含最高位变为0;当尾数全为0,表示真值为+-0

当阶码全为1,尾数全为0,表示无穷大

当阶码全为1,尾数不全为0,表示非数值(非法运算)

 

浮点数的加减运算

对阶→尾数加减→规格化→舍入→判溢出

舍入:“0”舍“1”入法,恒置“1”法。

采用双符号位,可以拯救尾数溢出

强制类型转换的有损与无损转换

 

补码尾数规格化(符号位与最高位相反):正数最大值0.11…1;最小值0.10…0

负数最大值为1.01…1;最小值1.00…0.

当数值出现正负上溢,报异常进中断;当数值出现正负下溢(超出最大负数或最小正数),当作0。

 

机器字节:计算机进行一次整数运算所能处理的二进制数据的位数

CPI:执行一条指令所需的时钟周期数

数据通路带宽 :数据总线一次所能并行传送的位数

 

  • 0
    点赞
  • 1
    评论
  • 1
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

相关推荐
©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值