概念:
在应用的开发过程中,由于初期数据量小,开发人员写SQL语句时更重视功能上的实现,但是当应用系统正式上线后,随着生产数据量的急剧增长,很多SQL语句开始逐渐显露出性能问题,对生产的影响也越来越大,此时这些有问题的SQL语句就成为整个系统性能的瓶颈,因此我们必须要对他们进行优化
MySQL的优化方式有很多,大致可以从以下几点来优化SQL:
1.从设计上优化SQL
2.从查询上优化
3.从索引上优化
4.从存储上优化
MySQL的优化:
1. 查看SQL执行频率
MySQL客户端连接成功后,通过show [session][global]status命令可以查看服务器状态信息,通过查看状态信息可以查看对当前数据库的主要操作类型

查询结果显示进行SQL查询操作是最多的,因此之后的优化是以SQL查询为主导的
2.定位低效率执行SQL-慢查询日志
可以通过以下两种方式定位执行效率较低的SQL语句:
慢查询日志:通过慢查询日志定位那些执行效率较低的SQL语句
show processlist:该命令查看当前MySQL在进行的线程,包括线程的状态,是否锁表等,可以实时地查看SQL的执行情况,同时对一些锁表操作进行优化

最低阈值时间默认为10秒,如果SQL的执行时间大于等于10秒则算为慢查询,将该操作记录到慢日志中去
3.定位低效率执行SQL-查询SQL动态执行状态

4.Explain分析执行计划-基本使用
通过以上步骤查询到效率低的SQL语句后,可以通过EXPAIN命令获取MySQL如何执行SELECT语句的信息,包括在SELECT语句执行过程中表如何连接和连接的顺序

关于explain的字段解释:

5.Explain的分析执行计划-id
id字段是select查询的序列号,是一组数字,表示的是查询中执行selecy子句或者是操作表的顺序,id情况有三种:
a.id相同表示加载表的顺序是从上到下:

b.id不同,id的值越大,优先级越高,越先被执行

c.id有相同,也有不同,同时存在
id相同的可以认为是一组,从上往下顺序执行,在所有的组中,id的值越大,优先级越高,越先执行

6.Expalin分析执行计划-select_type
表示select的类型,常见的取值如下表所示:

7.Explain分析执行计划-type
type显示的是访问类型,是较为重要的一个指标,可以取值为:

结果值从最好到最坏依次是:system>const>eq_ref>ref>range>index>ALL
注意:system查询系统表,表示直接从内存读取数据而不会从磁盘读取,但是5.7及以上版本不再显示system,直接显示ALL
8.Explain分析执行计划-其他指标字段
a.Explain之table:
显示这一步所访问数据库中表名称,有时不是真实的表名
b.Explain之rows:
扫描行的数量
c.Explain之key:
possible_keys:显示可能应用在这张表的索引,一个或者多个
key:实际使用的索引,如果为NULL,则没有使用索引
key_len:表示索引中使用的字节数,该值为索引字段最大可能长度,并非实际使用长度,在不损失精确性的前提下长度越短越好
d.Explain之extra:
其他的额外的执行计划信息,在该列展示:

9.MySQL的优化-show file分析SQL:
MySQL从5.0.37版本开始增加了对show profiles和show profile语句的支持,show profiles能够在做SQL优化时帮助我们了解时间都耗费到哪里去了
通过have_profile参数,能够看到当前MySQL是否支持profile:

通过profile,我们能够更清楚的了解SQL执行的过程,首先可以执行如下的操作:

执行完上述命令之后,再执行show profiles指令,来查看SQL语句执行的耗时:

通过show profile for query query_id语句可以查看到该SQL执行过程中每个线程的状态和消耗的时间:

在获取到最消耗时间的线程状态后,MySQL支持进一步选择all,cpu,block io,context switch,page faults等明细类型来查看MySQL在使用什么资源上耗费了更高的时间,例如:选择查看CPU的耗费时间:


10.MySQL的优化-查看trace优化器
MySQL5.6提供了对SQL的跟踪trace,通过trace文件能够进一步了解为什么优化器选择A计划而不是选择B计划
打开trace,设置格式为JSON,并设置trace最大能够使用的内存大小,避免解析过程中因为默认内存过小而不能够完整展示

最后,检查information_schema.optimizer_trace就可以知道MySQL是如何执行SQL的:

本文详细介绍了MySQL性能优化的方法,包括从设计、查询、索引和存储四个方面进行优化。重点关注SQL查询的优化,通过查看SQL执行频率、利用慢查询日志定位低效SQL,以及使用EXPLAIN分析执行计划。通过对EXPLAIN的id、select_type、type等字段的解析,可以深入理解SQL执行过程,进一步提升系统性能。
864

被折叠的 条评论
为什么被折叠?



