ARC 128 C - Max Dot (DP+思维)

链接

题意:

给出你n,m,s, 和n个数a[i],让你构造出一个长度为n的一个序列p,使得 ∑ p i ∗ a i \sum p_i*a_i piai最大,并且要满足一下条件

  • 0 < = p 1 < = p 2 < = . . . . < = p n < = m 0<=p_1<=p_2<=....<=p_n<=m 0<=p1<=p2<=....<=pn<=m
  • ( ∑ p i ) = s (\sum p_i)=s (pi)=s

分析:

首先我们采用三段分割,至于为什么要三段分,因为他要求单调递增,那么后面一定是大的,我们为了让答案最大一定会使后面一段使得变成一样的,中间平分剩下的前面一段为0。
既然我们知道要三段论 ,我们直接就枚举一下中间那一段的左端点和右端点就好了,
第三段为最大值M,第二段求剩下平均数,第一段为0,然后求答案最大值。

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
typedef unsigned long long ull;

#define x first
#define y second
#define sf scanf
#define pf printf
#define PI acos(-1)
#define inf 0x3f3f3f3f
#define lowbit(x) ((-x)&x)
#define mem(a,x) memset(a,x,sizeof(a))
#define rep(i,n) for(int i=0;i<(n);++i)
#define repi(i,a,b) for(int i=int(a);i<=(b);++i)
#define repr(i,b,a) for(int i=int(b);i>=(a);--i)
#define debug(x) cout << #x << ": " << x << endl;

const int MOD = 998244353;
const int mod = 1e9 + 7;
const int MAX = 2e5 + 10;
const int dx[] = {0, 1, -1, 0, 0};
const int dy[] = {0, 0, 0, 1, -1};
const int dz[] = {1, -1, 0, 0, 0, 0 };
int day[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};


void init()
{

}
ll qpow(ll a, ll b, ll p)
{
    ll ans = 1;
    while(b)
    {
        if(b & 1) ans = ans * a % p;
        a = a * a % p;
        b >>= 1;
    }
    return ans;
}


string str;
ll n,m,s;
ll a[MAX];
double sum[MAX];
void solve()
{
    cin>>n>>m>>s;
    for(int i = 1 ;i <=n;i++){
        cin>>a[i];        
        sum[i]=sum[i-1]+double(a[i]);
    }
    double res=0.0;
    for(int i=0;i<=n;i++){///左端点
        for(int j=i+1;j<=n+1;j++){
            double num=s-m*(n-j+1);///最后一段 用了多少 
            if(num<0.0||num>(j-i-1)*m) continue; //不够, 
            double ans=m*(sum[n]-sum[j-1]);///后半段得到价值
            if(j>i+1) {///中间有平分的那一段
                ans += (sum[j-1]-sum[i])*num/(double)(j-i-1);
            }
            res=max(res,ans);
        }
    }
    printf("%.10lf\n",res);
}

int main()
{
    init();
    ll t = 1;
    ///scanf("%lld", &t);
    while(t--)
    {
        solve();
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值