2018ICPC青岛(D,E)

2021/11/03 19:03:28

D . Magic Multiplication

题意:给出A,B可以计算出C,计算方式是:A的第一位与B位上的数相乘得到一个数,加入字符串,接着A第二位数,,举个例子就是:23 × \times × 45=8101215,
8=24,10=25,12=34,15=35.

然后给出C,然我们求出,A,B,如果有多组符合条件,我们直接输出最小的A即可。

分析:首先我们知道这个运算,那么我们就能够得到,如果我们确定了A的第一位,那么就可以通过C前几位确定B的全部位上的数字:

因为A[1]确定了那么C[1]要是大于等于A[1]只能是A[1]*B[1]构成的C[1],因为B[1]是一位数。然后如果小于A[1],那么只能是A[1]*B[1]=C[1]*10+C[2].因为B[1]是一位数,当然对于C[1]等于0的话B[1]一定是0(这样是不行的。之后就可行),因为A[1]一定不是能,当然如果我们判断完几位之后看是否整除,如果无法整除那么肯定无解换一个数即可。一直把B整出来,然后用B挨着计算A[2],A[3]…反过来计算。当然里面有坑点,具体看代码吧,整体思路意思就是这样。

还有一点就是,如果我们A[1]是从小到大枚举的那么如果我们找到答案那么他一定是最小的!直接输出退出即可、

这样按着思路写来下代码也不是特别长,去掉头文件哪些没大用的东西,主代码也就30,40行,所以好好分析就好的。

/// 欲戴皇冠,必承其重。
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
typedef unsigned long long ull;

#define x first
#define y second
#define PI acos(-1)
#define inf 0x3f3f3f3f
#define lowbit(x) ((-x)&x)
#define debug(x) cout << #x << ": " << x << endl;

const int MOD = 998244353;
const int mod = 998244353;
const int N = 1e6 + 10;
const int dx[] = {0, 1, -1, 0, 0, 0, 0};
const int dy[] = {0, 0, 0, 1, -1, 0, 0};
const int dz[] = {0, 0, 0, 0, 0, 1, -1};
int day[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};

ll n, m;
char str[N],s[N];
void solve()
{
    scanf("%lld",&n);
    scanf("%s",str+1);
    scanf("%s",s+1);

    ll flag=1;
    ll sum=0,ans=0;
    for(int i=1;i<=n;i++){
        if(str[i]==s[i]){
            if(flag==1) continue;
            else {
                flag=1;
            }
        }else {
            ans++;
            if(flag==0) continue;
            else {
                flag=0;
                sum++;
            }
        }
    }

    if(sum>2) puts("0");
    else if(sum==2){
        puts("6");
        return ;
    }else if(sum==1) {
        printf("%lld\n",(n-ans)*2+(ans-1)*2);            
    }
    else if(sum==0){
        printf("%lld\n",n*(n+1)/2);            
    }
}
int main()
{
    ll t = 1;
    scanf("%lld", &t);
    while(t--)
    {
        solve();
    }
    return 0;
}
E . Plants vs. Zombies

题意:长度为N的序列,初始为0,然后每次经过第i个点时,第i个数会增加a[i]价值,我们只能向左,或向右一格。一共可以m步,问这个序列最小价值最大是多少?

分析:首先我们看问题是最小价值最大化,再结合题意那么我们想到他一定有单调性。然后我们就可以二分答案,重要是如果check了。

check的话我们这样想,首先,我们发现他只能往左或这往右走,那么我们判断答案x是否符合条件,就得n个数都要≥x,那么我们要向一个位置多走几次我们就需要在(i,i+1)之间来回走,直到i位置符合题意(也就是≥x)然后就可以继续往后判断,最后只需要判断所需步数是否合法即可。需要注意如果i位置符合条件也要走一步因为,我们要一直走到最后(当然除了最后一个,最后一个如果也合法了,就没必要走了!!!这个很重要。)

补充:还有一个地方没说如果有地方a[i]为0,那么就不可能结果(最小值)大于0.

/// 欲戴皇冠,必承其重。
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
typedef unsigned long long ull;

#define x first
#define y second
#define sf scanf
#define pf printf
#define PI acos(-1)
#define inf 0x3f3f3f3f
#define lowbit(x) ((-x)&x)
#define mem(a,x) memset(a,x,sizeof(a))
#define rep(i,n) for(int i=0;i<(n);++i)
#define repi(i,a,b) for(int i=int(a);i<=(b);++i)
#define repr(i,b,a) for(int i=int(b);i>=(a);--i)
#define debug(x) cout << #x << ": " << x << endl;

const int MOD = 998244353;
const int mod = 998244353;
const int N = 2e5 + 10;
const int dx[] = {0, 1, -1, 0, 0};
const int dy[] = {0, 0, 0, 1, -1};
const int dz[] = {1, -1, 0, 0, 0, 0 };
int day[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};

ll n, m;
ll a[N],b[N];
string str;

bool check(ll x){
    for(int i=1;i<=n+1;i++){
        b[i]=0;
    }
    ll num=0;
    for(int i=1;i<n;i++){
        ll cnt=1;
        if(b[i]<x){
            cnt=(x-b[i]+a[i]-1)/a[i];///次数            
        }
        num+=cnt*2-1;
        b[i]+=a[i]*cnt;
        b[i+1]+=a[i+1]*(cnt-1);
        if(num>m) return 0;
    }
    if(b[n]<x){
        ll cnt=(x-b[n]+a[n]-1)/a[n];
        num+=cnt*2-1;
    }
    if(num>m) return 0;
    return 1;
}
void solve()
{        
    scanf("%lld%lld",&n,&m);    
    bool flag=0;
    for(int i = 1;i<=n;i++){
        scanf("%lld",&a[i]);
        if(a[i]==0) flag=1;
    }
    if(flag) {
        puts("0");
        return ;
    }
    ll l = 0,r = 1e18;
    ll ans=0;
    while(l<=r){
        ll mid=(l+r)/2;
        if(check(mid)){
            ans=mid;
            l=mid+1;
        }else {
            r=mid-1;
        }
    }
    printf("%lld\n",ans);
}
int main()
{    
    ll t = 1;
    scanf("%lld", &t);
    while(t--)
    {
        solve();
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值