Codeforces Round #750 (Div. 2)E. Pchelyonok and Segments (数学+DP)

本文介绍了一种算法问题,Pchelyonok想通过选择数组中长度递减的不相交区间,使区间内数值和单调递增,以创造最漂亮的礼物给Mila。通过动态规划方法求解最大可选区间的数量,展示了如何从后向前转移来满足条件。
摘要由CSDN通过智能技术生成

链接

君子,修身齐家,治国平天下。

题意:

Pchelyonok决定给Mila一件礼物。Pchelyonok已经“买”了一个长度为 n 的数组 a,但他觉得送一个数组太普通了。他决定将这个数组中的一些区间送给Mila!

Pchelyonok想让他的礼物更漂亮,因此他决定从数组选择 k 个不相交的区间,满足:

第一个区间的长度是 k,第二个区间的长度是 k-1,…,第 k 个区间的长度是 1。

对任意 i < j i \lt j i<j,第 i i i 个区间在第 j j j 个区间左边。(即 r i < l j ) r_i \lt l_j) ri<lj)

这些区间内的数之和严格单调递增。(用符号语言说就是:令 s u m ( l , r ) = Σ i = l r a i sum(l,r)=\Sigma_{i=l}^{r}a_i sum(l,r)=Σi=lrai ,则 s u m ( l 1 , r 1 ) < s u m ( l 2 , r 2 ) < . . . < s u m ( l k , r k ) sum(l_1,r_1) \lt sum(l_2,r_2) \lt...\lt sum(l_k,r_k) sum(l1,r1)<sum(l2,r2)<...<sum(lk,rk)
Pchelenok希望他的礼物尽可能漂亮,所以他请你找到满足上述条件的 k 的最大值。

分析:

首先肯定是从后往前分析:为什么那?因为我们肯定从长度短的转移到长度长的。怎么转移那?无非就是找到连续长度大一的,区间和小的。然后我们看下转移方程:
d p [ i ] [ j ] = m a x ( d p [ i ] [ j ] , s u m [ i + j − 1 ] − s u m [ i − 1 ] ) dp[i][j]=max(dp[i][j],sum[i+j-1]-sum[i-1]) dp[i][j]=max(dp[i][j],sum[i+j1]sum[i1])
d p [ i ] [ j ] dp[i][j] dp[i][j]表示第i位置,长度为j是否合法。

/// 欲戴皇冠,必承其重。
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<ll, ll> pii;
typedef unsigned long long ull;

#define x first
#define y second
#define PI acos(-1)
#define inf 0x3f3f3f3f
#define lowbit(x) ((-x)&x)
#define debug(x) cout << #x << ": " << x << endl;

const int MOD = 998244353;
const int mod = 998244353;
const int N = 1e5 + 10;
const int dx[] = {0, 1, -1, 0, 0, 0, 0};
const int dy[] = {0, 0, 0, 1, -1, 0, 0};
const int dz[] = {0, 0, 0, 0, 0, 1, -1};
int day[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};

ll n, m,p;
ll a[N],b[N];
ll dp[N][500];

void solve()
{
    cin>>n;
    for(int i=1;i<=n;i++){
        cin>>a[i];
        b[i]=b[i-1]+a[i];
    }
    for(int i=1;i*i<=((n+1)*2);i++) dp[n+1][i]=-1e16;
    dp[n+1][0]=1e16;
    for(int i=n;i>=1;i--){
        for(int j=0;j*j<=((n+1)*2);j++){
            dp[i][j]=dp[i+1][j];
            if(j&&i+j-1<=n&&b[j+i-1]-b[i-1]<dp[i+j][j-1]) dp[i][j]=max(dp[i][j],b[i+j-1]-b[i-1]);
        }
    }
    for(int i=sqrt((n+1)*2);;i--){
        if(dp[1][i]>0) {
            cout<<i<<endl;
            return ;
        }
    }
}    
int main()
{
    ll t = 1;
    scanf("%lld", &t);
    while(t--)
    {
        solve();
    }
    return 0;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值