链接
君子,修身齐家,治国平天下。
题意:
Pchelyonok决定给Mila一件礼物。Pchelyonok已经“买”了一个长度为 n 的数组 a,但他觉得送一个数组太普通了。他决定将这个数组中的一些区间送给Mila!
Pchelyonok想让他的礼物更漂亮,因此他决定从数组选择 k 个不相交的区间,满足:
第一个区间的长度是 k,第二个区间的长度是 k-1,…,第 k 个区间的长度是 1。
对任意 i < j i \lt j i<j,第 i i i 个区间在第 j j j 个区间左边。(即 r i < l j ) r_i \lt l_j) ri<lj)。
这些区间内的数之和严格单调递增。(用符号语言说就是:令
s
u
m
(
l
,
r
)
=
Σ
i
=
l
r
a
i
sum(l,r)=\Sigma_{i=l}^{r}a_i
sum(l,r)=Σi=lrai ,则
s
u
m
(
l
1
,
r
1
)
<
s
u
m
(
l
2
,
r
2
)
<
.
.
.
<
s
u
m
(
l
k
,
r
k
)
sum(l_1,r_1) \lt sum(l_2,r_2) \lt...\lt sum(l_k,r_k)
sum(l1,r1)<sum(l2,r2)<...<sum(lk,rk)
Pchelenok希望他的礼物尽可能漂亮,所以他请你找到满足上述条件的 k 的最大值。
分析:
首先肯定是从后往前分析:为什么那?因为我们肯定从长度短的转移到长度长的。怎么转移那?无非就是找到连续长度大一的,区间和小的。然后我们看下转移方程:
d
p
[
i
]
[
j
]
=
m
a
x
(
d
p
[
i
]
[
j
]
,
s
u
m
[
i
+
j
−
1
]
−
s
u
m
[
i
−
1
]
)
dp[i][j]=max(dp[i][j],sum[i+j-1]-sum[i-1])
dp[i][j]=max(dp[i][j],sum[i+j−1]−sum[i−1])
d
p
[
i
]
[
j
]
dp[i][j]
dp[i][j]表示第i位置,长度为j是否合法。
/// 欲戴皇冠,必承其重。
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<ll, ll> pii;
typedef unsigned long long ull;
#define x first
#define y second
#define PI acos(-1)
#define inf 0x3f3f3f3f
#define lowbit(x) ((-x)&x)
#define debug(x) cout << #x << ": " << x << endl;
const int MOD = 998244353;
const int mod = 998244353;
const int N = 1e5 + 10;
const int dx[] = {0, 1, -1, 0, 0, 0, 0};
const int dy[] = {0, 0, 0, 1, -1, 0, 0};
const int dz[] = {0, 0, 0, 0, 0, 1, -1};
int day[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
ll n, m,p;
ll a[N],b[N];
ll dp[N][500];
void solve()
{
cin>>n;
for(int i=1;i<=n;i++){
cin>>a[i];
b[i]=b[i-1]+a[i];
}
for(int i=1;i*i<=((n+1)*2);i++) dp[n+1][i]=-1e16;
dp[n+1][0]=1e16;
for(int i=n;i>=1;i--){
for(int j=0;j*j<=((n+1)*2);j++){
dp[i][j]=dp[i+1][j];
if(j&&i+j-1<=n&&b[j+i-1]-b[i-1]<dp[i+j][j-1]) dp[i][j]=max(dp[i][j],b[i+j-1]-b[i-1]);
}
}
for(int i=sqrt((n+1)*2);;i--){
if(dp[1][i]>0) {
cout<<i<<endl;
return ;
}
}
}
int main()
{
ll t = 1;
scanf("%lld", &t);
while(t--)
{
solve();
}
return 0;
}

本文介绍了一种算法问题,Pchelyonok想通过选择数组中长度递减的不相交区间,使区间内数值和单调递增,以创造最漂亮的礼物给Mila。通过动态规划方法求解最大可选区间的数量,展示了如何从后向前转移来满足条件。
490

被折叠的 条评论
为什么被折叠?



