Codeforces Round #746 (Div. 2) E. Bored Bakry(math+dp)

本文探讨了一个关于数组的算法问题,目标是找到一个连续子区间,该子区间的异或和小于区间内元素的异或。通过分析,确定了问题的关键在于判断偶数长度子区间,并利用异或性质简化搜索。核心算法展示了如何逐位比较并动态维护异或状态。
摘要由CSDN通过智能技术生成

链接

题意:

给定一个 n 个数的数组,要求找一个连续子区间,满足该子区间的区间且大于区间异或和。求该子区间的最大长度。

分析:

首先分析:当长度为奇数时会发生怎样的状况:如果首位是全1那么区间且在改为上是1,区间异或和也是1,如果不是全1那么区间且一定是0,而区间异或和可能是1也可能是0.

所以我们得出长度一定是偶数,然后我们分析,只有全是1的时候区间且才比区间异或优,这时区间且是1,区间异或和是0.

当我们从最高位分析时,我们判断到i位需要知道前一位是不是两个相等的情况,如果属于相等的情况我们才能往后看。

我们看区间异或 其实就是只要两个数相等就说明这个区间异或之后位是0.

/// 欲戴皇冠,必承其重。
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<ll, ll> pii;
typedef unsigned long long ull;

#define x first
#define y second
#define PI acos(-1)
#define inf 0x3f3f3f3f
#define lowbit(x) ((-x)&x)
#define debug(x) cout << #x << ": " << x << endl;

const int MOD = 998244353;
const int mod = 998244353;
const int N = 1e6 + 10;
const int dx[] = {0, 1, -1, 0, 0, 0, 0};
const int dy[] = {0, 0, 0, 1, -1, 0, 0};
const int dz[] = {0, 0, 0, 0, 0, 1, -1};
int day[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};

ll n, m,p;
ll a[N],b[N],c[N],d[N];

void solve()
{
    cin>>n;
    for(int i=1;i<=n;i++){
        cin>>a[i];        
    }
    ll ans=0;
    for(int i=20;i>=0;i--){
        for(int j=1;j<=n;j++){
            b[j]=b[j-1]+((a[j]>>i)&1);
            c[j]^=((b[j]&1)<<i);
        }
        memset(d,-1,sizeof d);
        d[0]=0;
        for(int j=1;j<=n;++j){
            if(d[c[j]]==-1) d[c[j]]=j;
            else {
                ll k=d[c[j]];
                if(b[j]-b[k]==j-k)ans=max(ans,j-k);
                else d[c[j]]=j;
            }
        }
    }
    cout<<ans<<endl;
}    
int main()
{
    ll t = 1;
    ///scanf("%lld", &t);
    while(t--)
    {
        solve();
    }
    return 0;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值