链接
题意:
给定一个 n 个数的数组,要求找一个连续子区间,满足该子区间的区间且大于区间异或和。求该子区间的最大长度。
分析:
首先分析:当长度为奇数时会发生怎样的状况:如果首位是全1那么区间且在改为上是1,区间异或和也是1,如果不是全1那么区间且一定是0,而区间异或和可能是1也可能是0.
所以我们得出长度一定是偶数,然后我们分析,只有全是1的时候区间且才比区间异或优,这时区间且是1,区间异或和是0.
当我们从最高位分析时,我们判断到i位需要知道前一位是不是两个相等的情况,如果属于相等的情况我们才能往后看。
我们看区间异或 其实就是只要两个数相等就说明这个区间异或之后位是0.
/// 欲戴皇冠,必承其重。
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<ll, ll> pii;
typedef unsigned long long ull;
#define x first
#define y second
#define PI acos(-1)
#define inf 0x3f3f3f3f
#define lowbit(x) ((-x)&x)
#define debug(x) cout << #x << ": " << x << endl;
const int MOD = 998244353;
const int mod = 998244353;
const int N = 1e6 + 10;
const int dx[] = {0, 1, -1, 0, 0, 0, 0};
const int dy[] = {0, 0, 0, 1, -1, 0, 0};
const int dz[] = {0, 0, 0, 0, 0, 1, -1};
int day[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
ll n, m,p;
ll a[N],b[N],c[N],d[N];
void solve()
{
cin>>n;
for(int i=1;i<=n;i++){
cin>>a[i];
}
ll ans=0;
for(int i=20;i>=0;i--){
for(int j=1;j<=n;j++){
b[j]=b[j-1]+((a[j]>>i)&1);
c[j]^=((b[j]&1)<<i);
}
memset(d,-1,sizeof d);
d[0]=0;
for(int j=1;j<=n;++j){
if(d[c[j]]==-1) d[c[j]]=j;
else {
ll k=d[c[j]];
if(b[j]-b[k]==j-k)ans=max(ans,j-k);
else d[c[j]]=j;
}
}
}
cout<<ans<<endl;
}
int main()
{
ll t = 1;
///scanf("%lld", &t);
while(t--)
{
solve();
}
return 0;
}

本文探讨了一个关于数组的算法问题,目标是找到一个连续子区间,该子区间的异或和小于区间内元素的异或。通过分析,确定了问题的关键在于判断偶数长度子区间,并利用异或性质简化搜索。核心算法展示了如何逐位比较并动态维护异或状态。
147

被折叠的 条评论
为什么被折叠?



